Fort Belvoir North Area (FBNA) Distribution Center Environmental Assessment

Fort Belvoir, Virginia June 2022

THIS PAGE INTENTIONALLY LEFT BLANK

Fort Belvoir North Area (FBNA) Distribution Center Fort Belvoir, Virginia

ENVIRONMENTAL ASSESSMENT

Reviewed by: U.S. Army Garrison Fort Belvoir

Wilamena G. Harback Chief, Environmental Division

Recommended for Approval: U.S. Army Garrison Fort Belvoir Approved by: U.S. Army Garrison Fort Belvoir

Bradford D. Britain Director, Public Works Joshua P. SeGraves Colonel, U.S. Army Commanding THIS PAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

1		IN	TRODUCTION	1-1
	1.1	PR	OJECT BACKGROUND	1-1
	1.2	PU	RPOSE AND NEED	1-1
	1.3	SC	OPE OF THE ENVIRONMENTAL ASSESSMENT	1-3
	1.4		TERAGENCY/INTERGOVERNMENTAL COORDINATION AND ONSULATIONS	1-3
	1.4.	1	Interagency Coordination and Consultation	1-3
	1.4.	2	Government to Government Consultations	1-4
	1.4.	3	Other Agency Consultations	1-4
	1.5	PU	BLIC AND AGENCY REVIEW OF THE DRAFT EA	1-5
	1.6	EN	VIRONMENTAL LAWS AND REGULATIONS	1-5
2		DE	ESCRIPTION OF PROPOSED ACTION AND ALTERNATIVES	2-1
	2.1	PR	OPOSED ACTION	2-1
	2.1.	1	Alternative 1 (Preferred Alternative)	2-1
	2.2	NC	OACTION ALTERNATIVE	2-1
	2.3	OT	HER ALTERNATIVES CONSIDERED BUT ELIMINATED	2-3
	2.3.	1	Commercial Sites	2-3
	2.3.	2	Government Sites	2-3
3		AF	FECTED ENVIRONMENT AND ENVIRONMENTAL CONSEQUENCES	3-1
	3.1	LA	ND USE	3-1
	3.1.	1	Affected Environment	3-1
	3.1.	2	Environmental Consequences	3-1
	3.2	GE	COLOGY, TOPOGRAPHY AND SOILS	3-2
	3.2.	1	Affected Environment	3-2
	3.2.	2	Environmental Consequences	3-5
	3.3	WA	ATER RESOURCES	3-6
	3.3.	1	Affected Environment	3-6
	3.3.	2	Environmental Consequences	3-17
	3.4	BIO	OLOGICAL RESOURCES	3-21
	3.4.	1	Vegetation	3-21
	3.4.	2	Wildlife	3-24
	3.4.	3	Rare, Threatened and Endangered Species	3-24

3.4.4	4 Partners in Flight	
3.4.5	5 Environmental Consequences	
3.5	HAZARDOUS AND TOXIC MATERIALS AND WASTE (HTMW)	
3.5.1	Affected Environment	
3.5.2	2 Environmental Consequences	
3.6	UTILITIES	
3.6.2	Affected Environment	
3.6.2	2 Environmental Consequences	
3.7	NOISE	
3.7.2	Affected Environment	
3.7.2	2 Environmental Consequences	
3.8	AIRSPACE	
3.8.1	Affected Environment	
3.8.2	2 Environmental Consequences	
3.9	AIR QUALITY	
3.9.1	Affected Environment	
3.9.2	2 Environmental Consequences	
3.10	TRAFFIC	
3.10	.1 Affected Environment	
3.10	.2 Environmental Consequences	
3.11	CULTURAL AND HISTORIC RESOURCES	
3.11	.1 Affected Environment	
3.11	.2 Environmental Consequences	
3.12	SOCIOECONOMICS, ENVIRONMENTAL JUSTICE, and PROTECTIO	
	CHILDREN	
3.12		
3.12	1	
	CUMULATIVE EFFECTS	
3.13	5 1	
	.2 Cumulative Effects on Resource Areas	
4	CONCLUSIONS	
5	ACRONYMS	
6	LIST OF PREPARERS	
7	REFERENCES	7-1

Figures

Figure 1-1: Location of Fort Belvoir and FBNA	1-2
Figure 2-1: Proposed Project Location on FBNA	2-2
Figure 2-2: Project Sites Considered within the NCR	2-4
Figure 3-1: Topography	3-3
Figure 3-2: Soils	
Figure 3-3: Accotink Creek Conservation Corridor	3-9
Figure 3-4: Surface Waters	3-9
Figure 3-5: Floodplains	3-12
Figure 3-6: Forest Stands	
Figure 3-7: Small Whorled Pogonia Habitat	3-26
Figure 3-8: Special Habitat Areas	
Figure 3-9: Imaginary Surfaces at DAAF	3-45
Figure 3-10: Count Locations for Existing Conditions	3-54

Tables

Table 1-1: Compliance with Federal Environmental Statutes and Executive Orders	1-6
Table 3-1: Soil Types within the Proposed Action Site	3-5
Table 3-2: Fairfax County Noise Ordinance (County of Fairfax, 2021)	3-39
Table 3-3: Noise Limits Definitions (U.S. Army, 2007)	3-40
Table 3-4: Noise Measurement Results	3-41
Table 3-5: Calculated Construction Noise Levels	3-42
Table 3-6: Calculated Typical Operations Noise Levels	3-43
Table 3-7: National Ambient Air Quality Standards	3-47
Table 3-8: mNSR Emissions Limits and Emissions from Stationary Sources for CY 2020	3-51
Table 3-9: Estimated Annual Air Emissions from the Proposed Action	3-52
Table 3-10: Existing Intersection Operational Analysis - FBNA	3-55
Table 3-11: Build Condition (2023) Intersection Operational Analysis	3-56
Table 4-1: Summary of Potential Environmental Consequences on Environmental Resource	s.4-1

Appendices

- Appendix A Agency Coordination
- $\label{eq:appendix} Appendix \ B-Wetland \ Delineation \ Report$
- Appendix C Coastal Zone Management Act Federal Consistency Determination
- Appendix D Forest Stand Delineation Report
- Appendix E Small Whorled Pogonia Field Study
- Appendix F Northern Long-Eared Bat Study
- Appendix G Record of Non-Applicability
- Appendix H Traffic Impact Study
- Appendix I Noise Study

THIS PAGE INTENTIONALLY LEFT BLANK

1 1 INTRODUCTION

2 3 4

1.1 PROJECT BACKGROUND

Pursuant to the National Environmental Policy Act (NEPA) of 1969 (Title 42, U.S. Code [USC],
4321-4370f), as amended; regulations of the Council on Environmental Quality (CEQ) (40 Code
of Federal Regulations [CFR] 1500-1508); and 32 CFR 651, *Army Analysis of Environmental Actions*, Fort Belvoir has prepared an Environmental Assessment (EA) to evaluate potential
environmental effects associated with construction and operation of a new distribution center at
the Fort Belvoir North Area (FBNA) in Springfield, Virginia.

11

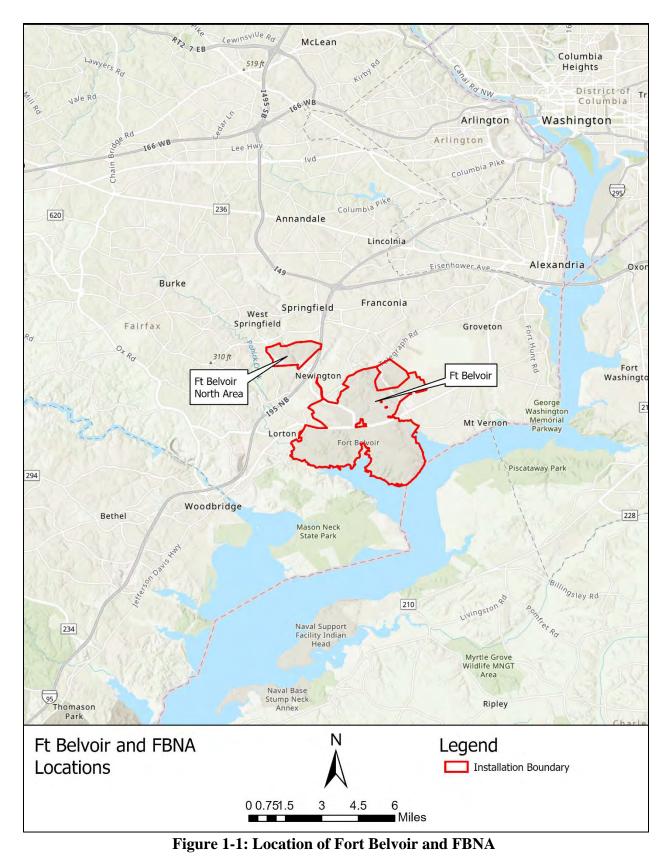
12 FBNA is located approximately 14 miles southwest of Washington, D.C., and about 13 miles 13 southwest of the Pentagon, along Interstate 95 (I-95) in Fairfax County, Virginia (Figure 1-1). As 14 a strategic sustaining base for America's Army in the National Capital Region, Fort Belvoir 15 provides logistical, intelligence, and administrative support to a diverse group of more than 140 16 Army and Department of Defense (DoD) organizations. Fort Belvoir contributes to the nation's 17 defense primarily by providing a secure operating environment for regional and worldwide DoD 18 missions and functions. The garrison also provides housing, medical services, recreational 19 facilities, and other support services for active duty military members and retirees in the National 20 Capital Region (Fort Belvoir, 2014b).

21

22 The Army established Fort Belvoir during World War I as Camp A.A. Humphreys. In 1919, the 23 Army Engineer School relocated to Camp Humphreys and remained on the installation until 1988. 24 After World War II, Fort Belvoir's mission began to shift from training to research, development, 25 test, and evaluation activities. In the 1950s, the installation's mission expanded to include hosting 26 DoD organizations. With the departure of the Army Engineer School in 1988, Fort Belvoir's 27 mission to support DoD organizations grew. In September 2005, the Defense Base Realignment 28 and Closure (BRAC) Commission recommended numerous realignment and closure actions for 29 military capabilities, which led to the establishment of the current configuration of facilities on

30 FBNA.

3132 Formerly known as the Army Engineer Proving Ground (EPG), FBNA is located in Springfield,


Virginia, approximately 3 miles northwest of Fort Belvoir's main installation. FBNA currently
 hosts the National Geospatial Intelligence Agency (NGA) headquarters and associated support
 facilities, which were constructed in 2011.

35 36

37 **1.2 PURPOSE AND NEED**

38

The purpose of this Proposed Action is to construct and operate an approximately 525,000 square foot warehouse and administrative building with approximately 600 personnel, associated parking, and covered storage on FBNA. This facility would support the delivery and receipt of materials within and across the Washington Metropolitan Area and National Capital Region (NCR) to achieve distribution efficiencies. The action would also comply with Office of Management and Budget (OMB) guidance that encourages stewardship of taxpayer resources and improved joint site usage.

1 2

The Proposed Action is needed to modernize logistical operations and address safety, security, and
 operational concerns specific to the distribution center and its administrative functions.

3

1.3 SCOPE OF THE ENVIRONMENTAL ASSESSMENT

4 5

6 Under the guidance provided in NEPA and in 32 CFR 651, either an EA or an Environmental 7 Impact Statement (EIS) must be prepared for any major Federal action. Actions that are determined 8 to be exempt by law, emergencies, or categorically excluded do not require the preparation of an 9 EA or EIS. If an action may significantly affect the environment, an EIS would be prepared. An 10 EA provides sufficient evidence and analysis for determining whether or not to prepare an EIS. 11 An evaluation of the environmental consequences of the Proposed Action and the No Action Alternative includes direct, indirect, and cumulative effects, as well as qualitative and quantitative 12 13 (where possible) assessment of the level of significance of these effects. The EA results in either 14 a Finding of No Significant Impact (FNSI) or a Notice of Intent (NOI) to prepare an EIS.

15

16 The purpose of this EA is to inform decision makers and the public of the likely environmental 17 consequences of the Proposed Action and No Action Alternative. This EA identifies, documents, 18 and evaluates environmental effects of the construction and operation of a distribution center on 19 FBNA in Springfield, Virginia. Environmental effects would include those related to construction 20 and operation of the Proposed Action as well as impacts of increased personnel and traffic to 21 FBNA. The Proposed Action and alternatives, including the No Action Alternative and other 22 alternatives considered, are described in Section 2.0.

22 23

The existing conditions on FBNA are described in Section 3.0, Affected Environment and

Environmental Consequences. These existing conditions, along with the No Action Alternative, serve as a baseline against which other alternatives will be measured to evaluate the effects of the construction and operation of the distribution center. The evaluation of cumulative impacts from the Proposed Action can be found in Section 4.0. The following resources are evaluated in this EA: land use; geology, topography and soils; water resources; biological resources; hazardous and toxic materials and waste (HTMW); utilities; noise; airspace; air quality; cultural and historic resources; traffic; and socioeconomics, environmental justice, and protection of children.

32

33 1.4 INTERAGENCY/INTERGOVERNMENTAL COORDINATION AND 34 CONSULATIONS

35

36 1.4.1 Interagency Coordination and Consultation

37

Per the requirements of the Intergovernmental Cooperation Act of 1968 (42 United States Code
 [USC] 4231(a)) and Executive Order (EO) 12372, *Intergovernmental Review of Federal Programs*, Federal, state, and local agencies with jurisdiction that could be affected by the
 Proposed Action will be notified during the development of a draft EA.

42

Early Input, or Scoping, is the early and open process used to solicit early comments on theProposed Action so that comments can be considered and addressed in the draft EA.

1 An early input notice for this Proposed Action was advertised on 13 April 2022, and a virtual 2 informational meeting was held on 19 April 2022 to provide additional information on the 3 Proposed Action and ways for stakeholders and the public to submit early comments.

4

5 The early input notice was published in the Washington Post, the Connection Mount Vernon 6 Gazette and Springfield, and the Washington Times. Comments were accepted via the project 7 email <u>FBNA@usace.army.mil</u> and the project website, <u>https://www.nab.usace.army.mil/FBNA/</u>. 8

Appendix A contains the list of stakeholders and the public notified early for input.

9 10

1.4.2 Government to Government Consultations

11 12

13 EO 13175, Consultation and Coordination with Indian Tribal Governments, directs Federal 14 agencies to coordinate and consult with Native American tribal governments whose interests might 15 be directly and substantially affected by activities on Federally administered lands. Consistent with that EO and Department of Defense Instruction (DoDI) 4710.02, Interactions with Federally 16 17 Recognized Tribes, Federally recognized tribes that are historically affiliated with the Fort Belvoir 18 geographic region are invited to consult on all proposed undertakings that have a potential to affect 19 properties of cultural, historical, or religious significance to the tribes. The tribal consultation 20 process is distinct from NEPA consultation or the interagency coordination process, and it requires 21 separate notification of all relevant tribes. The timelines for tribal consultation are also distinct 22 from those of other consultations. The Native American tribal governments that were coordinated 23 or consulted with regarding these actions are listed in Appendix A.

24

25 1.4.3 Other Agency Consultations

26

27 Per the requirements of Section 106 of the National Historic Preservation Act (NHPA) and 28 implementing regulations (36 CFR 800); Section 7 of the Endangered Species Act (ESA) and 29 implementing regulations; the Migratory Bird Treaty Act (MBTA); and Coastal Zone Management 30 Act (CZMA); findings of effect and request for concurrence were transmitted to the Virginia 31 Department of Historic Resources (VDHR) and the United States Fish and Wildlife Service 32 (USFWS). Because the Proposed Action is located within Virginia's Coastal Zone, a consistency 33 determination was drafted, and will be sent to the Virginia Coastal Zone Management Program for 34 review (Appendix C).

35

Fort Belvoir also initiated consultation with the following agencies for the proposed project:
Virginia Department of Wildlife Resources (VDWR), Virginia Department of Environmental
Quality (VADEQ), Fairfax County Department of Planning and Development, and National
Capital Planning Commission (NCPC).

- 40
- 41 Concurrence indicating a finding of no effect for the construction and operation of the distribution
- 42 center was sent by the VDHR on 21 June 2022. On 22 February 2022, a report was generated
- 43 through the Information for Planning and Consultation (IPaC) system, the USFWS online system
- 44 for searching for species protected under the ESA, which notes that ten protected species have the
- 45 potential to occur within the proposed project area.

1 2 Correspondence regarding the findings, concurrence, and resolution of any adverse impact is 3 included in Appendix A.

4 5

PUBLIC AND AGENCY REVIEW OF THE DRAFT EA 1.5

6

7 A Notice of Availability (NOA) for the draft EA was advertised in the newspapers of record (listed 8 below) announcing the availability of the draft EA for review. The NOA invited stakeholders and 9 the public to review and comment on the draft EA. The scoping meeting presentation was updated 10 and posted to the project website with a summary of analysis and results of the draft EA.

11

12 The NOA was published in the Washington Post, the Connection-Mount Vernon Gazette and 13 Springfield, and the Washington Times. Electronic copies of the draft EA were made available for 14 review on the project website, https://www.nab.usace.army.mil/FBNA, and on the Fort Belvoir Environmental webpage at https://home.army.mil/belvoir/index.php/about/Garrison/directorate-15 public-works/ environmental-division. The draft EA was also made available by request from Fort 16 17 Belvoir, and hard copies were placed in the Fort Belvoir Library at 9800 Belvoir Rd, Fort Belvoir,

- 18 VA 22060, and at the following Fairfax County Public Libraries:
- 19 • Kingstowne Library, 6500 Landsdowne Ctr, Alexandria, VA 22315
- 20 Sherwood Regional Library, 2501 Sherwood Hall Lane, Alexandria, VA 22306 •
- 21 Richard Byrd Library, 7250 Commerce St, Springfield, VA 22150 •

22 Comments received during the 30-day public review period will be addressed in the final EA, as 23 appropriate. All coordination letters sent and responses received to date during the preparation of 24 this EA are located in Appendix A.

25

26 1.6 ENVIRONMENTAL LAWS AND REGULATIONS

27

28 This draft EA has been prepared in accordance with the NEPA, as amended (Title 42 USC §4321 29 et seq.), NEPA-implementing regulations of the CEQ (40 CFR 1500-1508), and the Army's 30 NEPA-implementing regulations at 32 CFR 651.

31

32 Army decisions that affect environmental resources and conditions occur within the framework of 33 numerous laws, regulations, and EOs. Some of these authorities prescribe standards for compliance 34 while others require specific planning and management actions to protect environmental values 35 potentially affected by Army actions. Key provisions of appropriate statutes and EOs are described 36 in more detail throughout the text of this EA and in Table 1-1.

- 37
- 38 39
- 40
- 41
- 42

Table 1-1: Compliance with Federal Environmental Statutes and Executive Orders

ACTS	Compliance
Archaeological Resources Protection Act (ARPA) of 1979	FULL
Army Regulation 200-1, Environmental Protection and Enhancement	FULL
Clean Air Act, as amended (42 United States Code [U.S.C.] ch. 85, subch. I §7401 et seq.)	FULL
Clean Water Act, as amended (33 U.S.C. ch. 23 §1151)	FULL
Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended by the Superfund Amendments and Reauthorization Act of 1986 (42 U.S.C. §9601 et seq.)	FULL
Endangered Species Act of 1973, as amended (16 U.S.C. ch. 35 §1531 et seq.)	FULL
Energy Independence and Security Act of 2007, Section 438	FULL
Farmland Protection Policy Act (7 U.S.C 4201)	FULL
Fish and Wildlife Coordination Act, as amended (16 U.S.C. 661-667e)	FULL
Migratory Bird Treaty Act (16 U.S.C §§703-712, et seq.)	FULL
National Environmental Policy Act of 1969 (42 U.S.C. §4321 et seq.)	FULL
National Historic Preservation Act of 1966, as amended (16 U.S.C. ch. 1A, subch.II §470 et seq.)	FULL
Noise Control Act of 1972, as amended (42 U.S.C. §§4901-4918, et seq.)	FULL
North American Wetlands Conservation Act (16 U.S.C. 4401-4412)	FULL
Resource Conservation and Recovery Act (42 U.S.C. ch. 82 §6901 et seq.)	FULL
Safe Drinking Water Act, as amended (42 U.S.C. §300f)	FULL
Sikes Act, as amended (16 U.S.C. 670a-670o)	FULL
Solid Waste Disposal Act of 1965, as amended (42 U.S.C 6901 et seq.)	FULL
Toxic Substances Control Act of 1976 (15 U.S.C. ch.53, subch. I §§2601-2629)	FULL
Watershed Protection and Flood Prevention Act of 1954 (16 U.S.C. §1101, et seq.)	FULL
Wild and Scenic Rivers Act (16 U.S.C. 1271, et seq.)	FULL
Executive Orders (EO)	Compliance
Protecting Public Health and the Environment and Restoring Science to Tackle the Climate Crisis (EO 13990)	FULL
Floodplain Management (EO 11988)	FULL
Protection of Wetlands (EO 11990)	FULL
Environmental Justice in Minority Populations and Low-Income Populations (EO 12898)	FULL
Federal Compliance with Pollution Control Standards (EO 12088)	FULL
Protection of Children from Environmental Health Risks and Safety Risks (EO 13045)	FULL

Executive Orders (EO)	Compliance
Invasive Species (EO 13112)	FULL
Consultation and Coordination with Indian Tribal Governments (EO 13175)	FULL
Chesapeake Bay Protection and Restoration (EO 13508)	FULL

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	THIS PAGE INTENTIONALLY LEFT BLANK
19	

1 **2 DESCRIPTION OF PROPOSED ACTION AND ALTERNATIVES**

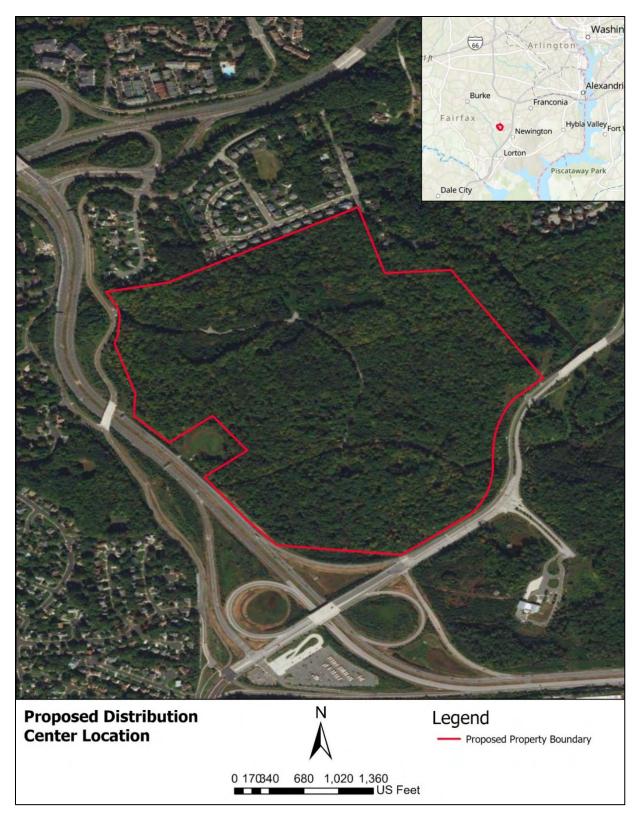
Pursuant to the requirements of NEPA and the regulations for implementing NEPA promulgated
by the CEQ (40 CFR 1500-1508) and 32 CFR 651, this section presents alternatives to the
Proposed Action, including the No Action Alternative.

2.1 PROPOSED ACTION

8 9 The Proposed Action is to construct an approximately 525,000 square foot distribution center 10 consolidated complex consisting of a high bay warehouse; two-story administrative building; truck 11 maintenance/refueling building; covered/enclosed storage buildings; entry control facility, 12 including gate house and vehicle inspection; emergency backup generator; and enhanced security 13 measures along the fenceline, including a new fence, an approximately 30-foot clear zone around the fence, and a maintenance and patrol path. The distribution center expects minimal truck traffic 14 15 compared to a typical industrial distribution center. The expected daily truck traffic flow is estimated to be about 640 cars and 12 trucks. The operational hours would typically be between 16 17 6am and 4pm.

18 2.1.1 Alternative 1 (Preferred Alternative)

19 The Preferred Alternative is to construct a distribution center on FBNA in an existing 20 professional/institutional area, keeping the same type of activity that already exists within the 21 FBNA fence line. The proposed site location on FBNA is a forested area bordered to the west by 22 the Fairfax County Parkway and to the east by Accotink Creek. A portion of the proposed site was 23 previously used as former munitions training ranges. Figure 2-1 depicts the approximately 161-24 acre Proposed Action Site boundary.


25

6 7

26 2.2 NO ACTION ALTERNATIVE

27

28 Under the No Action Alternative, a distribution center would not be constructed or operated on29 FBNA.

2.3 OTHER ALTERNATIVES CONSIDERED BUT ELIMINATED

Analyses of alternative site locations were conducted for multiple government and commercial locations both inside and outside the NCR. The alternative sites discussed below were determined to not meet the purpose and need of the Proposed Action and were not further examined in this EA. A map showing the commercial and government sites that were considered within the NCR is shown in Figure 2-2.

8 2.3.1 Commercial Sites

A market survey report from April 2021 summarized the commercial sites for purchase that were
 analyzed for this Proposed Action. In total, 19 potential commercial sites were evaluated using the
 following screening criteria:

- 12
- Distance should be ≤60-minute drive to Dulles International Airport and close to a military airport with sufficient runway length (11,000 feet);
- Zoning should be zoned for commercial or industrial use;
- Infrastructure should be available on site (or available to bring to site);
- Roadways should be able to support traffic to/from the site;
 - Floodplains site should not be located within the floodplain; and
- Concerns regarding sale of the property site may be undesirable or unavailable if it is ground lease only, has an unmotivated seller, or is under contract.
- 21

18

Of the 19 commercial sites evaluated, only two were considered "apparently suitable" – TerraBrite in Bristow, Virginia; and Prince William County Fairgrounds, Dumfries Assemblage, in Manassas, Virginia. These two sites were ultimately not carried forward in this EA because, in accordance with OMB Circular No. A-11, Appendix B guidance, joint site usage (a Federally owned site with similar Federal activities) was determined to be a better use of taxpayer resources, and mission partners are unknown for these sites.

28 2.3.2 Government Sites

29 In accordance with OMB guidance to use Federal sites, where feasible, at least 12 government 30 sites on the east coast, both inside and outside the NCR, were considered for this project. Nine of 31 these sites were screened from further consideration due to their distance from the NCR, distance 32 from a railhead, and/or for not having at least 100 contiguous acres for project use. The remaining 33 three government sites were FBNA; Quantico in Prince William County, Virginia; and Fort A.P. 34 Hill in Caroline County, Virginia. Ultimately, Quantico and Fort A.P. Hill were screened from 35 further consideration due to their distances to Dulles International Airport and their lack of mission 36 partners.

- 37
- 38 Several other areas within FBNA were also considered; however, these sites were already slated
- 39 for other uses in accordance with FBNA's draft Area Development Plan (ADP), and thus were not
- 40 further analyzed in this EA.

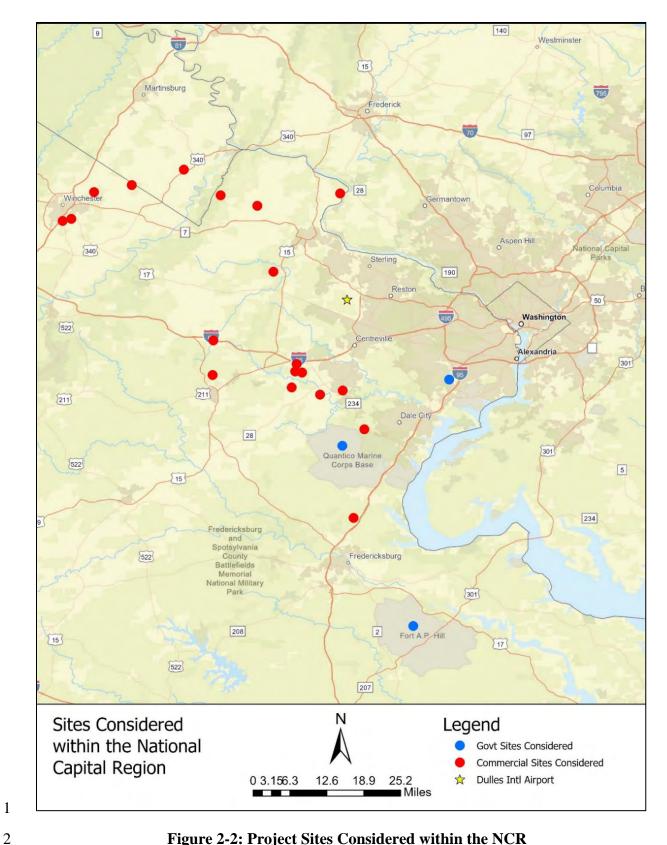


Figure 2-2: Project Sites Considered within the NCR

3 AFFECTED ENVIRONMENT AND ENVIRONMENTAL CONSEQUENCES

3.1 LAND USE

3.1.1 Affected Environment

6 7 FBNA, formerly known as the EPG, is an 804-acre noncontiguous property of Fort Belvoir that is 8 located approximately 1.5 miles northwest of the Main Post. FBNA was acquired in the early 9 1940s for the testing of a wide range of military engineering equipment and supplies, including 10 development of methods and equipment for the deployment, detection, and neutralization of 11 landmines and explosives. FBNA was under the jurisdiction of the Army Research, Development, 12 and Engineering Command and has undergone environmental investigation and remediation since 13 the discontinuation of testing activities and the return of the property to Fort Belvoir in 1988 (U.S. 14 Army, 2015). The Proposed Action Site, located west of Accotink Creek and north of Barta Road, 15 was used for explosives and munitions training within former ranges 5, 5a, and 5b and explosive materials storage, located within the project boundary (USACE, 2021a). 16

17

1 2 3

4 5

Land use of the entire FBNA is classified as Professional/Institutional (U.S. Army, 2021). As part of the 2005 BRAC, NGA was relocated to the eastern side of FBNA and occupies approximately 20 62 acres between Accotink Creek and Interstate-95. Other facilities on FBNA include an emergency services center (fire station) located in the northeastern corner of the property north of Barta Road, a child development center for the NGA facility, and a remote inspection facility (RIF). The RIF is located on southwestern FBNA and includes parking areas, access control stations, and paved road surfaces.

25

The Proposed Action Site is situated on the west side of FBNA and is separated from the existing eastern facilities by Accotink Creek and from the RIF by Barta Road. Cissna Road traverses the southern area of the Proposed Action Site and an unpaved road connects Cissna Road north to the former ranges. Other than the former ranges and associated infrastructure, such as bunkers, the Site is relatively undeveloped with contiguous tracts of forested areas, tributaries, and associated wetlands. The Proposed Action is included in the final ADP for FBNA and is in accordance with the land use classification for the Site (U.S. Army, 2021).

33

34 3.1.2 Environmental Consequences

- 35 36 .
 - 3.1.2.1 Threshold of Significance
- 37

Impacts on land use are analyzed based on the potential changes, caused by the Proposed Action,to land use designation.

- 40
- 41 3.1.2.2 Impacts of Proposed Action42

The Proposed Action Site is situated within an area of FBNA designated as aProfessional/Institutional land use zone. This land use generally includes non-tactical

administrative functions, as well as some areas on post where research and development activities are concentrated (U.S. Army Garrison Fort Belvoir, 2015). Land use under the Proposed Action would be consistent with the current land use designation. Therefore, the Proposed Action would have no effect on land use, because no change to the site's current land use designation would be required for the Project.

6 7

8

11

13

15

3.1.2.3 Impacts of No Action Alternative

9 The No Action Alternative would have no effect on land use. The current land use would remain10 unchanged.

12 **3.2 GEOLOGY, TOPOGRAPHY AND SOILS**

14 3.2.1 Affected Environment

16 *3.2.1.1 Geology*

17

FBNA is located within the Piedmont geologic province, characterized by gently rolling topography with thick soils underlain by deeply weathered bedrock. In Virginia, the Piedmont province is bounded by the Blue Ridge Mountains to the west and the Fall Line, roughly demarcated by I-95, to the east. The underlying bedrock of the Piedmont is as much as 1,070 million years old and is comprised of rocks of sedimentary and metamorphic origins.

23

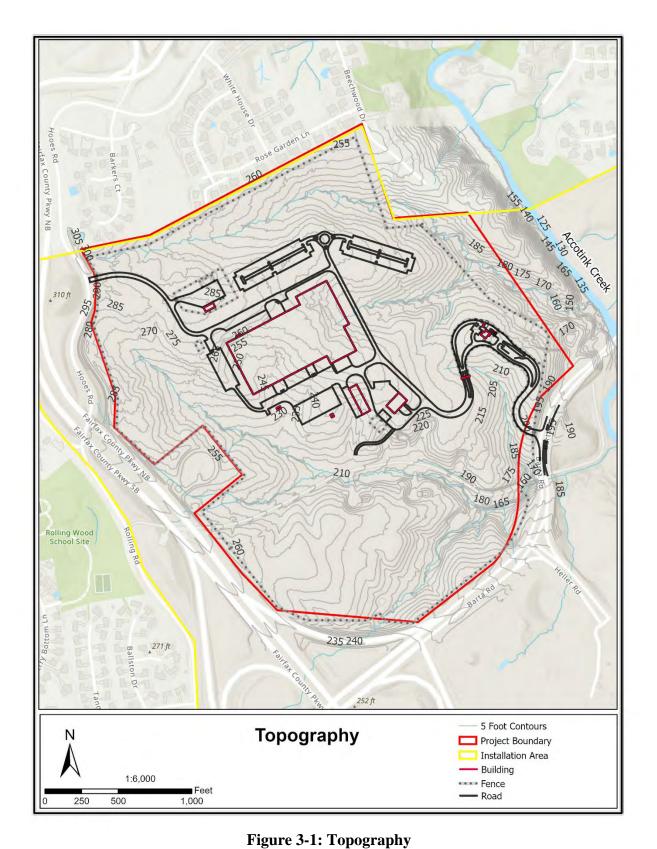
A finger of Piedmont Upland province bedrock extends from north to south along Accotink Creek,
forming the bed and adjacent slopes of the creek that roughly bisects FBNA. Most of the more
gently sloping areas to the east and west of the creek consist of unconsolidated sediment deposits
typical of the Coastal Plain province found east of the Fall Line (U.S. Army, 2007).

28

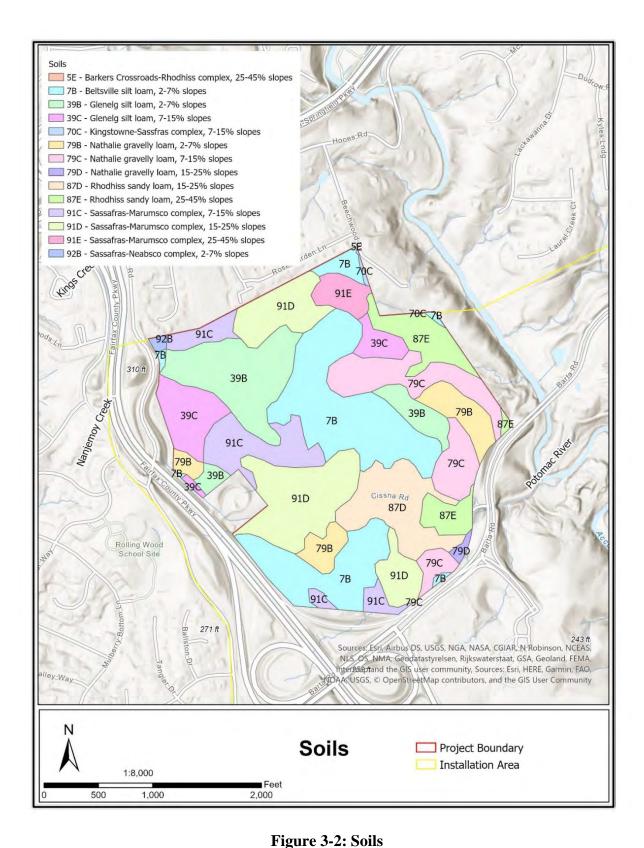
29 3.2.1.2 Topography

30

The topography of FBNA is gently rolling, with steep slopes ranging from 20 to 30 percent grade forming a narrow valley along Accotink Creek (Figure 3-1). The Proposed Action Site is west of Accotink Creek, with elevations ranging from 150 to 300 feet above mean sea level (an approximate 4.1 percent slope), generally sloping down from northwest to southeast in the direction of Accotink Creek. Several ravines with streams that flow into Accotink Creek traverse the site.


37

38 *3.2.1.3* Soils


39

There are 14 soil types within the Proposed Action Site (Figure 3-2, Table 3-1) that are comprised
predominantly of Beltsville silt loam, 2 to 7 percent slopes, according to the U.S. Department of

- 42 Agriculture (USDA), Natural Resources Conservation Service (NRCS), soils map (USDA, 2022).
- 43 The next most prevalent soil type is Sassafras-Marumsco complex, 15 to 25 percent slopes;
- followed by Glenelg silt loam, 2-7 percent slopes; and Nathalie gravelly loam, 7 to 15 percent

Draft EA FBNA Distribution Center Fort Belvoir, Virginia

Map Unit Symbol	Soil	Approximate acreage within Proposed Action Site	Drainage Class	Hydric
5E	Barkers Crossroads-Rhodhiss complex, 25 to 45% slopes	<0.1	Well Drained	No
7B	Beltsville silt loam, 2 to 7% slopes	38.8	Moderately well drained	No
39B	Glenelg silt loam, 2 to 7% slopes	20.6	Well Drained	No
39C	Glenelg silt loam, 7 to 15% slopes	9.8	Well Drained	No
70C	Kingstowne-Sassfras complex, 7 to 15% slopes	0.2	Well Drained	No
79B	Nathalie gravelly loam, 2 to 7% slopes	8.8	Well Drained	No
79C	Nathalie gravelly loam, 7 to 15% slopes	16.5	Well Drained	No
79D	Nathalie gravelly loam, 15 to 25% slopes	0.6	Well Drained	No
87D	Rhodhiss sandy loam, 15 to 25% slopes	12.1	Well Drained	No
87E	Rhodhiss sandy loam, 25 to 45% slopes	9.8	Well Drained	No
91C	Sassafras-Marumsco complex, 7 to 15% slopes	13.2	Well Drained	No
91D	Sassafras-Marumsco complex, 15 to 25% slopes	26.5	Well Drained	No
91E	Sassafras-Marumsco complex, 25 to 45 % slopes	3.5	Well Drained	No
92B	Sassafras-Neabsco complex, 2 to 7% slopes	0.4	Well Drained	No
	lric criteria refer to the potential of a so s. Source: NRCS, 2022	oil to support vegetatio	n and/or hydric condition	ons indicative

Table 3-1: Soil Types within the Proposed Action Site

slopes. All other soil types make up less than 10 percent of the Proposed Action Site. Soil types are moderately to well drained and are non-hydric.

8 3.2.2.1 Threshold of Significance 9 10 Geology topography and soil impacts are evaluated s

3.2.2 Environmental Consequences

Geology, topography, and soil impacts are evaluated separately in the following sections. The impacts on geology are analyzed based on potential changes, caused by the Proposed Action, to bedrock, unique sensitive landforms, or rock foundations. The impacts on topography are analyzed on potential changes to surface features, especially steep slopes. Impacts to soils are analyzed 1 based on potential changes to soil type, erosion, and sedimentation due to the implementation of2 the Proposed Action.

- 3 4
- 3.2.2.2 Impacts of Proposed Action

5 6 Geology

- 7 The Proposed Action would have less-than-significant adverse impacts on underlying geology.
- 8 While some excavation into the underlying bedrock would be required to establish the foundation 9 for the two-story administrative building and single-story high bay warehouse, these actions would
- alter only a small area within the larger, regional landscape and would not alter the underlying
- 11 geological characteristics.
- 12
- 13 <u>Topography</u>
- 14 The Proposed Action would have less-than-significant adverse effects on the topography of this
- 15 site, and not result in the alteration or destruction of any unique or noteworthy topographic features
- 16 within FBNA. Excavation and grading would be employed to prepare the site for construction, and
- 17 the elevations would be permanently altered to support the buildings, the parking areas, and
- 18 stormwater management system. The proposed buildings and parking areas would be located on
- 19 the site's topographic highs and not within the steep slopes of the surface water drainages.
 20
- 20 21 Soils
- The Proposed Action would have short-term, less-than-significant adverse impacts on soils. Clearing of vegetation and grading and excavation of soils would cover approximately 30 acres
- 24 within the project footprint. These actions expose soils and increase the potential for erosion.
- 25 Because of the well-established connection between erosion of exposed soils and introduction of
- 26 increased sedimentation into downstream waters, regulations have been enacted by federal, state 27 and local governments to require project proponents to develop and implement plans to control
- and local governments to require project proponents to develop and implement plans to control
 site conditions and prevent erosion, and these regulations would be followed to minimize impacts.
- 29 These regulations and the types of site control mechanisms are described in more detail in Section
- 30 3.3.1.6.
- 31

32 *3.2.2.3 Impacts of No Action Alternative* 33

Under the No Action Alternative, no impact on geology, topography or soils in the area would be
 expected, because no grading or other earthwork would occur.

37 **3.3 WATER RESOURCES**

38

39 3.3.1 Affected Environment 40

- 41 3.3.1.1 Surface Water
- 42

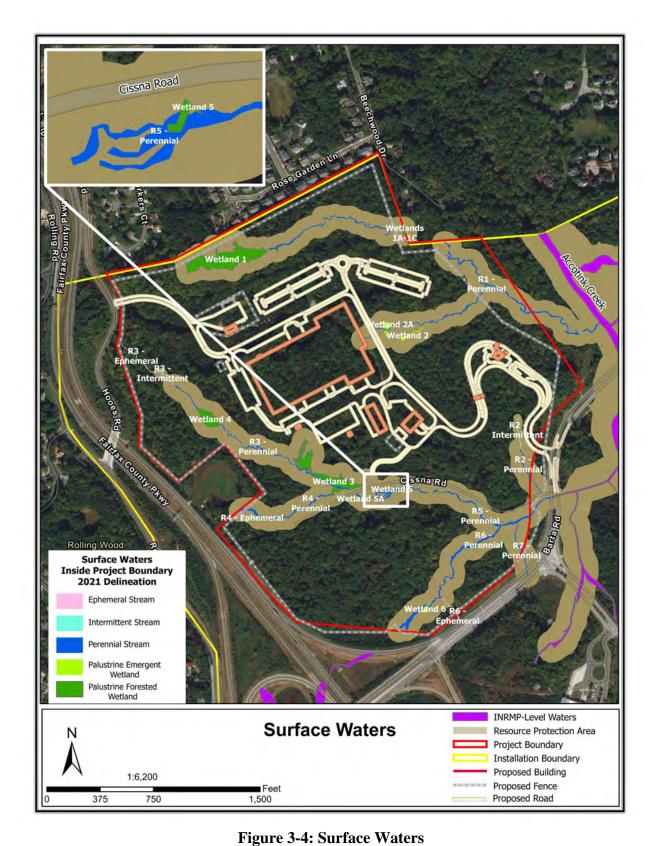
FBNA is located within the highly urbanized 52-square-mile Accotink Creek watershed, which
 ultimately discharges to Accotink Bay and the Potomac River. Accotink Creek roughly bisects

1 FBNA into eastern and western sections. Accotink Creek enters FBNA from the north at an 2 elevation of approximately 120 feet above mean sea level and descends to an elevation of 3 approximately 100 feet above mean sea level before exiting FBNA to the south. Steep slopes rise 4 from both the eastern and western banks of Accotink Creek. The Accotink Creek Conservation 5 Corridor was established in 2005 as a mitigation action associated with the 2005 BRAC 6 Environmental Impact Statement Record of Decision and is a Special Natural Area that serves to 7 protect the Accotink Creek riparian area on FBNA (U.S. Army, 2007). The Proposed Action Site 8 is located within the northwestern half of FBNA, just west of Accotink Creek. Under preliminary 9 design plans, a portion of the proposed roadway in the southeastern corner of the Proposed Action 10 Site crosses into the Accotink Creek Conservation Corridor, where it connects to Barta Road 11 (Figure 3-3).

12

13 The project area is predominantly forested with two unnamed tributaries that flow in a general 14 west-to-east direction to their confluence with Accotink Creek off-site (Figure 3-4). The Fort Belvoir Integrated Natural Resources Management Plan (INRMP) (Fort Belvoir, 2017) has 15 identified these areas as perennial streams with associated wetlands. The U.S. Army Corps of 16 17 Engineers, (USACE) Baltimore District staff conducted a field survey on 9-10 October and 19-20 18 November 2021 to verify the location and size of the tributaries. The northern tributary (R1) 19 consists of two branches beginning at wetlands on-site (Wetland 1) that flow into Accotink Creek. 20 The southern tributary consists of six reaches (R2-7) beginning at Hooes Road to the northwest 21 (R4), a Fairfax County Parkway stormwater pond to the west (R4), Fairfax County Parkway to the 22 southwest and Barta Road to the south (R6), and Barta Road to the south (R7). These run west to 23 east through the Proposed Action Site to R5, flowing under Barta Road and into Accotink Creek. 24 A shorter reach, R8, begins north of R5 and connects east of the Proposed Action Site before Barta 25 Road. The field study determined that the streams exhibited signs of recent erosion such as 26 collapsed, unvegetated banks and steep incision, particularly as they progressed further 27 downstream. Further information on these tributaries is found in Appendix B.

28


29 West of the Proposed Action Site is an approximate 2.1-acre fenced stormwater pond for Fairfax

- 30 County Parkway. Reviews of historical aerial photography indicate that it was constructed between
- 2009 and 2010. The stormwater pond contains an outfall that connects to a pipe under the fence
 line and associated constructed berm, and then discharges to R4 of the southern unnamed tributary.
- 32 line and 33

34 As discussed in Section 3.5, the former firing and training range resulted in the disposal of 35 munitions and explosion debris within the project site and the contaminated area was designated as an area of potential concern (AOPC-21) (Arcadis, 2019). In March 2013, explosives and 36 chlorinated solvent compounds were detected in surface water and sediment samples collected at 37 38 AOPC-21 and included 1,3-dinotrobenzene, 2,4- dinitrotoluene (DNT), 2,6-DNT, 1-nitroso-3,5-39 dinitro-1,3,5-triazacyclohexane, 1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-40 tetrazocine (HMX), cis-1,2-dichloroethylene, and trichloroethylene (TCE). Long-term 41 groundwater monitoring is ongoing at munitions site areas AOPC-21 and solid waste management 42 units (SWMUs) M-32 and M-33 within the Proposed Action Site. Evaluation of potential risks 43 associated with contaminated groundwater will be conducted based on the current monitoring 44 results.

The Accotink Creek watershed is 87 percent developed with commercial, industrial, transportation 1 2 or residential land, with 28 percent of the non-tidal portion of the watershed covered by impervious 3 surface (VADEQ, 2017). The quality of surface waters in such highly urbanized areas typically 4 becomes degraded through increased amounts of sediments, chemicals, nutrients, and bacteria 5 resulting from human activities. Pursuant to Section 303(d) of the federal Clean Water Act 6 (CWA), which requires states to develop a list of impaired waterbodies, VADEQ has identified 7 Accotink Creek as an impaired water based on biological monitoring of benthic macroinvertebrate 8 communities. Section 303(d) of the CWA further requires states to take steps to halt or counteract 9 degradation through development of Total Maximum Daily Load (TMDL) standards for specific 10 pollutants. TMDLs target the load reduction needed to reduce the pollutants of concern and 11 represent the total pollutant loading that a waterbody can receive without exceeding water quality standards. For Accotink Creek, TMDLs are under development for sediment and chlorides. 12

13

14 3.3.1.2 Resource Protection Areas

15

16 The two tributaries and associated wetlands in the Proposed Action Site are denoted as a Resource 17 Protection Area (RPA) on Fort Belvoir's INRMP mapping. These features ultimately connect to 18 Accotink Creek, which discharges to Accotink Bay, a tributary to the Potomac River and the 19 Chesapeake Bay. Recognizing the Chesapeake Bay's critical role in the economy and health of the 20 region and the importance of improving the health of the Bay, the State of Virginia's General 21 Assembly adopted the Chesapeake Bay Preservation Act in 1988. The Act requires local 22 governments within Tidewater Virginia to adopt implementing regulations that promote water 23 quality protection measures. One of the key provisions of this Act requires the protection of 24 vegetated riparian buffers, known as RPAs, no less than 100 feet wide located adjacent to and 25 landward of all tidal shores, tidal wetlands, water bodies with perennial flow, and non-tidal wetlands connected by surface flow and contiguous to tidal wetlands along water bodies with 26 27 perennial flow. In Fairfax County, where Fort Belvoir is located, the Chesapeake Bay Preservation 28 Ordinance (CBPO) is the applicable local regulation. Fort Belvoir recognizes the RPA designation, 29 but as a federal entity is not subject to the provisions of the Fairfax County ordinance. While Fort 30 Belvoir does not use the RPA maps produced by Fairfax County, the Army does delineate RPAs 31 on the installation, reflecting a spirit of compliance with the state and local requirements. Further, 32 as part of the INRMP, Fort Belvoir designates a 35-foot RPA buffer for intermittent streams. 33

34 Establishing an RPA serves to limit adverse effects of development adjacent to streams and tidal 35 wetlands by preserving vegetated buffers around sensitive aquatic resources. Vegetated buffers 36 provide additional surface area for attenuation of surface water run-off velocity, thereby reducing 37 erosion; filtration of excess nutrients and other pollutants carried by stormwater; and additional 38 habitat corridors. Development in these areas should be avoided and/or minimized. When impacts 39 occur, an additional review is conducted to determine the extent of impact, as well as mitigation 40 for the RPA infringement. Mitigation for RPA impacts typically includes the replanting of trees 41 and/or shrubs at a predetermined ratio or the enhancement of a degraded RPA elsewhere on Fort 42 Belvoir. RPAs are typically addressed during the wetland permitting process or the CZMA federal 43 consistency determination process. 44

1 It should be noted that EO 13508, *Chesapeake Bay Protection and Restoration*, must be addressed 2 in terms of the Army's obligation to consider the protection and restoration of the Chesapeake 3 watershed in terms of meeting the goals, outcomes and objectives set out in the Strategy for 4 Protecting and Restoring the Chesapeake Bay Watershed. This document not only sets 5 goals/outcomes/objectives of the federal government, but encourages coordination with state, 6 local, and non-governmental partners to protect and restore the health of the Chesapeake Bay 7 Watershed.

8

9 3.3.1.3 Floodplains

10

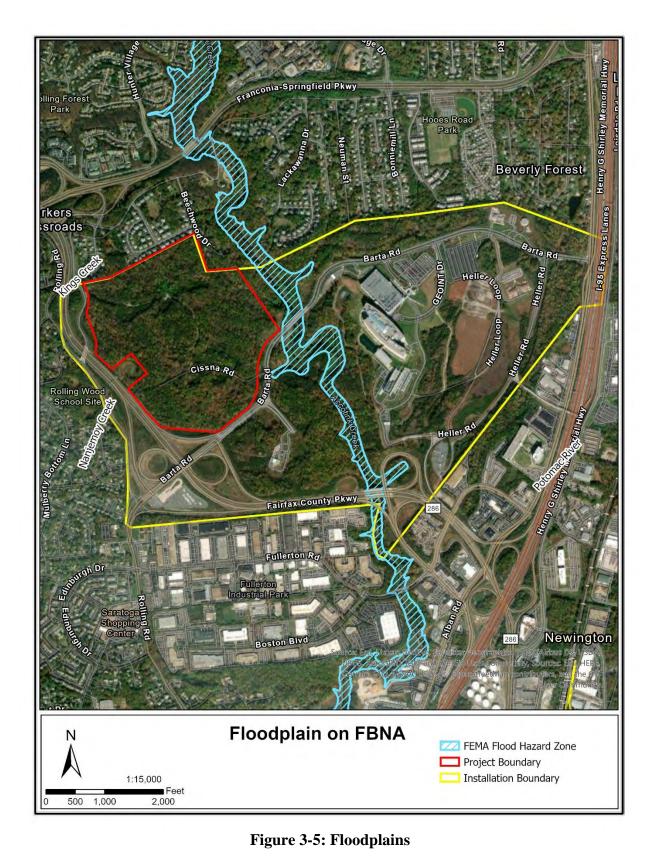
11 One-hundred-year floodplains on Fort Belvoir are protected under EO 11988, Floodplain 12 Management (May 24, 1977), which directs federal agencies to avoid, to the extent possible, the 13 long- and short-term adverse impacts associated with the occupancy and modification of floodplains and to avoid direct and indirect support of floodplain development wherever there is a 14 15 practicable alternative. The EO was issued in furtherance of NEPA, the National Flood Insurance Act of 1968, and the Flood Disaster Protection Act of 1973. Floodplains are defined in EO 11988 16 17 as the "lowland and relatively flat areas adjoining inland and coastal waters including flood prone 18 areas of offshore islands, including at a minimum, that area subject to a one percent or greater 19 chance of flooding in any given year." Additionally, EO 13690, Establishing a Federal Flood Risk 20 Management Standard and Process for Further Soliciting and Considering Stakeholder Input, was 21 reinstated in 2021. The EO established the Federal Flood Risk Management Standard, which is a 22 flexible framework to increase the resilience against flooding and help preserve the natural values 23 of floodplains.

24

As a federal agency subject to these EOs, Fort Belvoir is required to evaluate potential effects of
any action occurring in a floodplain. The Proposed Action Site is located outside of the 100-year
floodplain associated with Accotink Creek (Figure 3-5).

28

29 *3.3.1.4 Wetlands*


30

USACE defines wetlands as "those areas that are inundated or saturated with ground or surface water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted to life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas" (33 CFR 328). Important wetland functions include water quality improvement, groundwater recharge and discharge, storm water attenuation and storage, sediment detention, fish and wildlife habitat, and erosion protection.

37

EO 11990, *Protection of Wetlands* (May 24, 1977), requires Federal agencies to take action to minimize the destruction, loss, or degradation of wetlands, and to preserve and enhance the natural and beneficial values of wetlands. Under this EO, if wetlands are impacted by the Proposed Action, a Finding of No Practicable Alternative (FONPA) should be utilized to describe the proposed action, discuss its effect on the floodplain/wetland, and describe the alternatives considered. Construction in jurisdictional wetlands and waters of the United States is regulated by the USACE

44 pursuant to Section 404 of the CWA as implemented in regulations contained in 33 CFR 320–330.

Draft EA FBNA Distribution Center Fort Belvoir, Virginia

Impacts on state waters, including wetlands, are regulated by the Virginia Water Protection Permit 1

- 2 Program (9 Virginia Administrative Code [VAC] 25-210-10 et seq.), which serves as Virginia's
- 4

3 401 Water Quality Certification Program for federal Section 404 Permits.

5 The predominant wetland type on Fort Belvoir is Palustrine Forested wetland, which tends to occur 6 in association with the riparian areas of Accotink, Dogue, and Pohick Creeks. Wetlands generally 7 occur along the perennial and intermittent streams that are drainages of these creeks (U.S. Army 8 Garrison Fort Belvoir, 2015). The Fort Belvoir INRMP (Fort Belvoir, 2017) designated Palustrine 9 Forested and small Palustrine Scrub-Shrub wetlands within the Proposed Action Site. Mapping of 10 potential resources under the INRMP makes general assumptions based on a review of aerial 11 photography; thus, a wetland delineation was conducted by USACE Baltimore District Staff on 9-12 10 October and 19-20 November 2021 pursuant to the 1987 Corps of Engineers Wetland Delineation Manual and the 2010 Regional Supplement to the Corps of Engineers Wetland 13 14 Delineation Manual: Atlantic and Gulf Coastal Plain Region. Six wetlands were delineated within the Proposed Action Site, amounting to approximately 2.33 acres. The wetlands are described 15

16 below, and additional information is found in Appendix B

17

18 Wetland 1 is a riparian, forested wetland that forms the headwaters of the unnamed, perennial 19 tributary that discharges to Accotink Creek off-site to the east of the Proposed Action Site. The 20 wetland borders merge into the narrow banks of the stream, which becomes progressively more 21 incised as it travels downstream. This wetland is classified as Palustrine Forested with broad-22 leaved deciduous vegetation and a temporary flood regime. Dominant vegetation includes 23 blackgum (Nyssa sylvatica), red maple (Acer rubrum) and bitternut hickory (Carya cordiformis) 24 in the canopy, musclewood (Carpinus caroliniana) and sweetgum (Liquidambar styraciflua) in 25 the understory, and cinnamon fern (Osmundastrum cinnamomeum) and Japanese stiltgrass 26 (Microstegium vimineum) in the herbaceous layer.

27

28 Wetland 2 is a Palustrine Emergent wetland with persistent vegetation and a flood regime classified as seasonally flooded/saturated. The dominant vegetation observed included Japanese 29 30 stiltgrass, false nettle (Boehmeria cylindrica), New York fern (Thelypteris noveboracensis), Carex 31 spp. and common greenbrier (*Smilax rotundifolia*). The hydrology of this small wetland appears 32 to originate from a hillside seep, which is a common wetland type found within Fort Belvoir. The 33 groundwater daylights in the depression upslope from the relic roadbed, then flows downslope 34 along its compacted surface. Although hydric soil characteristics are noted in the near-surface 35 layers and hydrophytic vegetation predominates, there lacks a distinct and discrete discharge feature to the incised stream located to the north and downslope from this wetland. 36

37

38 Wetland 3 is classified as a Palustrine Forested wetland with broad-leaved deciduous vegetation 39 and a temporary flood regime. Wetland 3 is a slope wetland that discharges into an unnamed 40 tributary to Accotink Creek. The dominant canopy species observed was highbush blueberry 41 (Vaccinium corymbosum). Dominant understory vegetation observed was sensitive fern (Onoclea 42 sensibilis), deer tongue (Dichanthelium clandestinum) and common greenbrier.

43

44 Wetland 4 is classified as a Palustrine Forested wetland with broad-leaved deciduous vegetation 45 and a temporary flood regime. Wetland 4 is a riparian wetland located further upstream of Wetland 3's discharge point into the same unnamed tributary. The dominant canopy species observed were
sweet gum, red maple, white oak and tulip poplar (*Liriodendron tulipifera*). The dominant
understory vegetation consists of American holly (*Ilex opaca*) and highbush blueberry, and the
herbaceous layer was dominated by cinnamon fern, southern lady fern (*Athyrium asplenioides*),
whorled wood aster (*Oclemena acuminata*) and common greenbrier.

6

7 Wetland 5 is classified as a Palustrine Forested wetland with broad-leaved deciduous vegetation 8 and a temporary flood regime. Wetland 5 is a riparian wetland that drains into the unnamed 9 tributary to Accotink Creek downstream (south) of the culvert crossing under Cissna Road. The 10 canopy dominant species observed was tulip poplar with sweet gum and American holly in the 11 sapling layer. The dominant understory species observed were Japanese stiltgrass, New York fern, 12 soft rush (*Juncus effusus*), three-way sedge (*Dulichium arundinaceum*) and clearweed (*Pilea* 13 *pumila*).

14

Wetland 6 is classified as a Palustrine Emergent wetland with persistent vegetation and a temporary flood regime (PEM1A). This small, depressional wetland is located adjacent to an unnamed tributary to Accotink Creek. The dominant vegetation observed was Japanese stiltgrass, mountain laurel (*Kalmia latifolia*) and highbush blueberry.

19 20

) 3.3.1.5 Groundwater

21

The groundwater on FBNA is located approximately 10 to 20 feet below the surface and follows the surface water drainage of the area (U.S. Army, 2007). In the Proposed Action Site, groundwater discharges to the surface water drainage of the unnamed tributaries and Accotink Creek.

25

Groundwater monitoring wells were installed and sampled as part of ongoing investigation and
clearance activities at the former explosives and training ranges (Range 5, 5a, and 5b) located at
the Proposed Action Site.

29

30 Initial groundwater sampling at AOPC-21 in Former Range 5 detected concentrations of TCE, 31 RDX, and 2,4-/2,6-DNT (Arcadis, 2019) and identified them as groundwater constituents of concern (COCs). The removal of contaminated soil and Munitions and Explosives of Concern 32 33 (MEC) materials has prevented the further leaching of contaminants into the groundwater, but 34 elevated levels of RDX and 2,4-DNT/2,6-DNT remain. Groundwater sampling also detected 35 COCs of RDX, 2,4-DNT/2,6-DNT at M-32 and M-33 at Former Range 5a (Arcadis, 2021). The 36 contaminated sites are actively managed in conjunction with the lead regulatory agencies, VADEQ 37 and USEPA, through groundwater use restrictions and groundwater sampling. Additional 38 information about the investigations and clearance activities is found in Section 3.5.

- 39
- 40 *3.3.1.6 Stormwater*
- 41

The Proposed Action Site is located within the Accotink Creek watershed. There are no existing
stormwater management structures within the Proposed Action Site (U.S. Army, 2021).
Stormwater is directed by existing topography and drains downhill to the unnamed, perennial

tributaries and eventually into Accotink Creek. Stormwater flow is primarily surface flow, with some shallow sub-surface movement. There is a 2.1-acre stormwater pond to the west of the Proposed Action Site that discharges stormwater to the tributary in the south side of the Site.

4

Stormwater runoff in urban areas is one of the leading sources of water pollution in the United
States. Recognizing the importance of controlling stormwater generated from development,
federal, state and local governments have adopted requirements. The following regulations apply:

9 Federal Requirements

- 10 11 National Pollutant Discharge Elimination System (NPDES) - Section 402 of the Federal • CWA, known as the NPDES program, requires permits for the discharge of pollutants from 12 point sources and is administered by VADEQ through its Virginia Stormwater 13 14 Management Program (VSMP). Fort Belvoir operates a municipal separate storm sewer system (MS4) for the entirety of the installation (including FBNA) pursuant to the NPDES 15 regulations, and discharges stormwater runoff under VPDES Stormwater Permit No. 16 17 VAR040093. Stormwater runoff generated by development on FBNA, including the Proposed Action, would be included under the installation-wide permit, provided the 18 19 proponent comply with its terms and conditions and coordinate with the appropriate 20 personnel on Fort Belvoir.
- 21 22

23

24

25

26

27

28

29

30 31

32

33

34

35

36 37

38

• Energy Independence and Security Act (EISA), Section 438 – federal projects 5,000 square feet in size or greater are required to maintain or restore pre-development hydrology. Guidance provided by the USEPA promotes retaining rainfall on-site through infiltration, evaporation/transpiration, and re-use to the same extent as occurred prior to development. Section 438 requires that practices known as low impact development (LID) or green infrastructure, including reducing impervious surfaces and using vegetative practices, porous pavements, cisterns and green roofs be incorporated into development plans <u>https://www.epa.gov/sites/production/files/2015-09/documents/eisa-438-factsheet.pdf</u>.

• LID is a stormwater management approach that emphasizes the retention of native vegetation and soils, reduces runoff, and seeks to approximate predevelopment hydrologic conditions. LID provides an effective alternative to more traditional stormwater management approaches that rely on engineered structures. When properly used, LID can be cost effective by reducing the reliance on hard structures. It can make more efficient use of land resources by reducing the need for large, centralized stormwater basins, decreasing the total amount of runoff generated, and providing water-quality improvements (HDR, 2020).

3940 State (Virginia) Requirements (VADEQ)

41 42

43

- Stormwater Management Act (9VAC25-870)
 - o General Permit for Discharges of Stormwater from Construction Activities
 - Virginia BMP Clearinghouse

1	 Virginia Runoff Reduction Method
2	• Erosion and Sediment Control Law (9VAC25-840)
3	 Erosion and Sediment Control Plan
4	 Virginia Erosion and Sediment Control Handbook
5	• Chesapeake Bay Preservation Area Designation and Management (9VAC25-830-130)
6	• Construction activities disturbing one or more acres, requires:
7	• General Permit for the Discharge of Stormwater from Construction Activities
8	• Stormwater Pollution Prevention Plan (SWPPP), developed by the project
9	proponent, requires stormwater management measures as included in the
10	approved site plan, and demonstration of how these measures would be
11	maintained, identifying the responsible entity throughout duration of
12	construction.
13	
14	Installation Requirements
15	
16	• The Fort Belvoir Directorate of Public Works (DPW) reviews all construction site plans
17	involving 2,500 square feet or more of earth disturbance for compliance with the
18	installation's MS4 conditions, state requirements for stormwater management and
19	erosion/sediment control, and the Fairfax County Public Facilities Manual.
20	
21	3.3.1.7 Coastal Zone
22	
23	The CZMA of 1972 (16 USC §1451 et seq., as amended) provides assistance to the states, in
24	cooperation with federal and local agencies, for developing land and water use programs in coastal
25	zones. Section 307(c)(1) of the CZMA Reauthorization Amendment stipulates federal projects that
26	affect land uses, water uses, or coastal resources of a state's coastal zone must be consistent to the
27	maximum extent practicable with the enforceable policies of that state's federally approved coastal
28	management plan. The Commonwealth of Virginia has developed and implemented a federally
29	approved Coastal Resources Management Program (CRMP) describing current coastal legislation
30	and enforceable policies. There are enforceable policies for:
31	
32	Fisheries management
33	Subaqueous lands management
34	Wetlands management
35	Dune management
36	Non-point source pollution control
37	Point source pollution control
38	Shoreline sanitation
39	Air pollution control
40	Coastal lands management
41	
42	Virginia's Coastal Zone includes all of Fairfax County, including Fort Belvoir; therefore, federal
43	actions at Fort Belvoir are subject to federal consistency requirements. The VADEQ serves as the
44	lead agency for consistency reviews. The Proposed Action Site is characterized as previously

disturbed, with a gravel parking lot, unpaved and paved roads, and areas of forest, wetlands, and
 grass/shrub groundcover. While there are streambanks adjacent to the Proposed Action Site, there
 is no coastline present, nor dunes.

4

3.3.2 Environmental Consequences

5 6 7

8

3.3.2.1 Threshold of Significance

9 The threshold of significance for water resource and surface water quality impacts would be 10 exceeded if a proposed action would result in changes to regional groundwater patterns or 11 depletion of groundwater, substantial alteration of local surface water, or substantial degradation 12 of water quality. The threshold of significance for wetlands, RPAs, and floodplains would be 13 exceeded if a proposed action would result in substantial degradation of wetlands without 14 mitigation, and notable adverse impact on natural and beneficial floodplain values.

15

19

20

21

22

23

24

For coastal zone resources, the threshold of significance would be exceeded if a proposed action would not be consistent with the federal coastal zone policy, including consideration of the following:

- Substantial impacts of a proposed action on any land or water use or natural resource of the coastal zone;
- Substantial incremental impacts of a proposed action on any land or water use or natural resource of the coastal zone when added to past, present, and reasonably foreseeable future actions; and,
- Collective impacts of individual unrelated actions on any land or water use or natural resource of the coastal zone.
- 25 26

27 3.3.2.2 Impacts of Proposed Action

28

29 Surface Waters and RPAs

30 Implementation of the Proposed Action would result in less-than-significant adverse impacts on surface water. The Proposed Action includes the construction of roadways and parking features, 31 32 which could involve minimal construction in, on, or over surface waters (i.e., wetlands or streams) 33 and the Accotink Creek Conservation Corridor and could result in the disturbance, alteration, or 34 filling of the adjacent RPAs in multiple areas within FBNA. The proposed roadway on the east 35 side of the proposed warehouse and administrative building would potentially require a culvert crossing over stream R1. The crossing would be located where the southern branch of R1 emerges, 36 37 upstream of Wetlands 2 and 2A and of the hillside seep. The culvert crossing would impact less 38 than 0.002-acre of stream R1 and would not alter the stream course. The proposed roadway 39 entering the project site from Barta Road would be constructed through a portion of the RPA for 40 R2, but would not cross the stream itself; however, it would overlap with the Accotink Creek 41 Conservation Corridor. A proposed parking feature south of the proposed warehouse and 42 administrative building would be constructed slightly within the RPA for perennial stream R3.

The Proposed Action also includes the installation of a perimeter security fence, which could 1 2 involve minimal construction in, on, or over surface waters and could result in the disturbance, 3 alteration, or filling of the adjacent RPAs in multiple areas within FBNA. Short-term, less-than-4 significant adverse effects would result from the destabilization of the soils within the limits of 5 disturbance as a result of vegetation clearing and excavation/grading to prepare the site. This stage 6 of construction exposes soils and increases the potential for erosion and discharge of sediment-7 laden stormwater to downstream receiving waters; however, appropriate erosion and sediment 8 control measures would be implemented, pursuant to the construction SWPPP and the VSMP 9 Construction General Permit and would minimize any detrimental effects. 10

11 Construction of permanent stormwater management features would capture stormwater generated 12 from the development and be designed to maintain pre-development levels of off-site discharge. 13 It is expected that the overall effects of construction and operation of the buildings and parking 14 features would be beneficial to downstream receiving waters by stabilization of soils through 15 vegetation and retention and treatment of stormwater flows. Currently, there are no such 16 downstream stormwater management features, resulting in channeling and erosion of soil, 17 particularly associated with the more steeply sloped portions of the Proposed Action Site.

18

19 Through the site layout design process, all practicable steps would be made to avoid inclusion of 20 the unnamed tributaries to Accotink Creek, and associated RPAs, within the limits of disturbance 21 (LOD). Unavoidable crossings of the Accotink Creek Conservation Corridor would be mitigated 22 through incorporation of one or any combination of the following: on-site tree planting mitigation 23 or stream buffer enhancement vegetation planted elsewhere on FBNA along the Accotink 24 Corridor; oversized box culverts for wildlife crossings with grates to allow for light to assist in 25 wildlife crossing; streamside management zones; storm drains; bioretention and infiltration ponds; 26 or green roofs, permeable pavements, and vegetated swales. Any work within the stream and RPA, 27 as necessary to construct roadways, parking features, and security fencing would be appropriately 28 permitted through USACE Regulatory and the Commonwealth of Virginia. Activities during 29 construction would include appropriate best management practices (BMPs) to minimize sediment 30 transport and erosion consistent with state and federal land and water quality criteria.

- 31
- 32 <u>Wetlands</u>

33 Implementation of the Proposed Action under the current conceptual plan, the project would avoid 34 wetlands and have less-than-significant adverse impacts. However, there are approximately 2.33 35 acres of mapped wetlands within the project, and since the project plans are in the early stages of 36 development, the project would continue to avoid these wetlands by relocating the perimeter fence alignment or have the fence traverse over the stream and associated wetland. Prior to construction, 37 38 any unavoidable impacts would be permitted through USACE Regulatory and Commonwealth of 39 Virginia's wetland permitting programs. Stormwater generated from within the project site during 40 construction would be appropriately managed through erosion and sediment control measures required through the permitting process, preventing adverse effects of sedimentation on 41 42 downstream receiving waters that include wetlands. Permanent stormwater management features 43 would maintain pre- development levels of stormwater discharge.

- 1 <u>Groundwater</u>
- 2 Under the Proposed Action, no adverse effects are expected to occur to groundwater. Construction 3 of the Proposed Action would result in an increase of impervious surface area, reducing the 4 infiltration of stormwater into the shallow, near-surface aquifer. Due to residual groundwater 5 contamination within the project footprint, stormwater management features for the Proposed 6 Action would be required to control and redirect stormwater volume on site to minimize near field
- 7 infiltration into subsurface groundwater.
- 8
- 9 <u>Floodplains</u>
- 10 Under the Proposed Action, no adverse effects are expected to occur on floodplains. The Proposed
 11 Action is not located within a floodplain.
- 12
- 13 <u>Coastal Zone</u>
- 14 Construction and operation of the Proposed Action would be consistent with Virginia's CRMP.
- 15 Less-than-significant adverse impacts are anticipated under the current design plans; should any
- 16 impacts on streams occur, they would be mitigated through contributions to habitat restoration at
- 17 the installation's mitigation sites. Non-point source pollution would be managed through the use
- 18 of temporary erosion and sediment control measures defined in an approved Erosion and Sediment
- 19 Control plan or permanent stormwater management BMPs, as appropriate.
- 20

21 Fort Belvoir has determined that the Proposed Action would be consistent, to the maximum extent

- 22 practicable, with the CRMP's enforceable policies, as described in Appendix C. State review and
- 23 concurrence with the negative determination would be requested prior to initiating the Proposed
- 24 Action.
- 25 26 <u>Stormwa</u>ter
- Under the Proposed Action, less-than-significant adverse effects on stormwater would occur. The
 Proposed Action would add approximately 23.6 acres of impervious area within the Accotink
- 28 Proposed Action would add approximately 23.6 acres of impervious area within the Account 29 Creek watershed, resulting in an increase in stormwater volume from impervious surfaces that
- 30 could cause an increase in erosion and sedimentation if not appropriately controlled. The Proposed
- 31 Action would meet all applicable stormwater management regulations, ensuring consistent and
- 32 measurable steps to minimize detrimental impacts to water quality in downstream waters. As stated
- arlier, approximately 87 percent of land (45 square miles) within the watershed is developed, while approximately 28 percent (14 square miles) is accurately impervious surfaces. In the context
- while approximately 28 percent (14 square miles) is covered by impervious surfaces. In the context
- of this 52-square mile watershed in central Fairfax County, which encompasses all of FBNA, this increase would be minimal and be reduced by stormwater management strategies. Petroleum
- 37 pollutants from the exposed surfaces of the paved roadways and parking features would be treated
- 37 pointiants from the exposed suffaces of the paved roadways and pa38 through vegetated buffers and stormwater management structures.
- 39
- Because the project is located within a Chesapeake Bay Preservation Area and would disturb more
 than 2,500 square feet, the construction contractor would be required to prepare an erosion and
 sediment control plan in compliance with the Virginia Erosion and Sediment Control Law (9 VAC
 25-840) and in conformance with the Virginia Erosion and Sediment Control Handbook, Third
- 44 Edition, 1992. The plan would be submitted to Fort Belvoir's Stormwater Permit Manager for
- 45 review and approved by VADEQ's Northern Regional Office, and routine inspections would be

conducted throughout construction to ensure compliance with these permits. The contractor would
 also obtain a Construction General Permit and prepare and implement a construction SWPPP to

- 3 minimize sedimentation to downstream receiving water bodies.
- 4

5 This project and any construction activities associated with it has the potential to discharge 6 pollutants in surface waters to a monitored/permitted Industrial Stormwater Outfall (ISW RO-031 7 and RO-032). This outfall is continually monitored for Total Suspended Solids (TSS), Total 8 Petroleum Hydrocarbons (TPH), chloride, specific conductance, nitrogen and phosphorous, along 9 with other constituents; therefore, any uncharacteristically high sediment content in the stormwater 10 discharge detected at sampling could result in a violation of the VA0092771 permit. The construction contractor must contact Fort Belvoir DPW's Industrial Stormwater Section when 11 12 construction begins and ends, so that precautions can be employed in the course of routine permit-13 required sampling events for this outfall. Construction as-builts of the new stormwater system 14 would be required and must also be submitted to DPW's Environmental Division.

15

16 Construction BMPs would be implemented in accordance with federal, state, and local Fort Belvoir 17 regulations, including Fort Belvoir's MS4 Program and VPDES Permit VA0400093, to protect 18 downstream waters from sediment migration by ensuring adequate perimeter controls and buffers 19 are used, including silt fencing, synthetic hay bales, and similar measures. While these measures 20 would not entirely eliminate the potential for erosion and sedimentation, they would ensure that 21 short-term adverse impacts remain negligible.

22

Use of appropriate erosion and sediment control measures and long-term LID measures would ensure that neither the construction nor the operation of the Proposed Action would contribute to further degradation of water quality or exceed TMDLs established for Accotink Creek as regulated under Section 303(d). Therefore, short-term and long-term impacts on surface water quality on and in the vicinity of FBNA would be negligible.

28

29 3.3.2.3 Impacts of No Action Alternative

30

Under the No Action Aternative, less-than-significant adverse effects would occur on surface water because existing conditions at the Proposed Action Site would remain. There would be no man-made alteration of the current pattern of surface water flows across and discharging from the area. The recent erosion observed within the Accotink Creek tributaries such as collapsed, unvegetated banks and steep incision would likely continue to experience further downcutting, contributing to sediment loads downstream. There would be no alteration or construction within the RPA.

38

39 The No Action alternative would not impact jurisdictional wetlands, groundwater, floodplains, 40 coastal zone or stormwater on FBNA. Runoff would continue to discharge with no enhanced 41 treatment for volume, velocity or sedimentation downstream to tributaries of Accotink Creek and 42 associated floodplain wetlands that are located beyond the area.

- 43
- 44

1 2

3.4 BIOLOGICAL RESOURCES

3 Located on the western shore of the Potomac River, within the larger metropolitan area of 4 Washington, D.C., Fort Belvoir sustains its military mission while maintaining relatively large 5 areas of native vegetation in terms of size, diversity and regional position. Fort Belvoir has 6 recognized the ecological importance of its natural habitats by designating three refuges, two 7 biological corridors, wetlands and steep-sloped areas as environmentally constrained areas (Fort 8 Belvoir, 2017). These large areas of native vegetation afford a contiguous band of wildlife habitat 9 within and extending outside of the installation. Fort Belvoir's natural resources management 10 strategy, outlined in its INRMP, prioritizes preserving the native diversity of communities and 11 species within communities and implements an ecosystem-based natural resources management 12 program based in part on DoD Instruction 4715.3, Natural Resources Conservation Program and 13 Army Regulation 200-1, Environmental Protection and Enhancement, to guide development on 14 Fort Belvoir.

15

16 The Accotink Bay Wildlife refuge, Jackson Miles Abbott Wetland Refuge, T-17 Refuge, Accotink 17 Creek Conservation Corridor, and Forest and Wildlife Corridor are designated Special Natural 18 Areas by Fort Belvoir. The Accotink Creek Conservation Corridor was designated as a Special 19 Natural Area in 2005. This predominantly forested 191-acre area serves as a wildlife migratory 20 corridor and supports potential habitat for federally listed small whorled pogonia (*Isotria* 21 *medeoloides*) and several other species of management concern (Fort Belvoir, 2017).

22

Biological resources discussed in the following sections include vegetation, wildlife, threatened
and endangered species, and Partners in Flight (PIF) habitat. Relevant regulations and policies are
also discussed when applicable. The area of analysis for biological resources focuses on the
Proposed Action Site, taking into account a broader geographic range when appropriate.

27

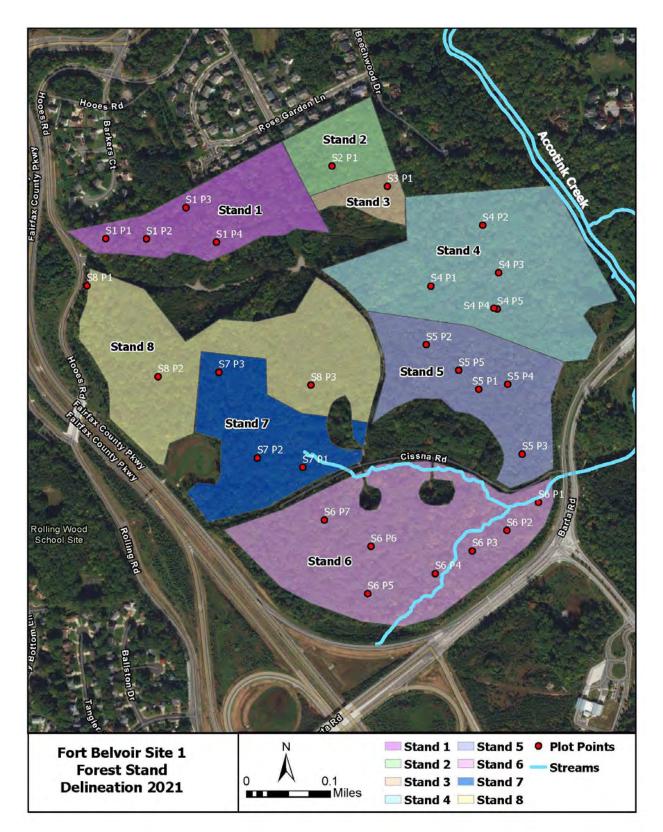
28 **3.4.1** Vegetation

29 30 The Proposed Action Site consists of approximately 161 acres. The 2017 Fort Belvoir INRMP 31 characterizes the site as predominantly forested and comprised of hardwood, mixed tulip poplar (Liriodendron tulip)/hardwood, mixed pine/hardwood, pine forests, and wetland seeps (Fort 32 33 Belvoir, 2017). There are two upland areas that were previously cleared for the former MEC 34 training area. Since these sites are no longer active, they have been allowed to revert to natural 35 habitats and have become early successional communities dominated by a near monoculture of Virginia (*Pinus virginiana*) pine samplings. No tree planting mitigations have been done at the 36 37 Proposed Action Site, and no tree planting mitigation sites will be impacted by the Proposed 38 Action.

- 39
- A forest stand delineation was performed by USACE Baltimore District Staff on 17 and 23-25
 August 2021 to inventory the forest composition at the Proposed Action Site. Forest stands were
 distinguished primarily by differences in species composition and successional stage and ranked
 as Priority 1, 2, or 3 following the guidelines of the Maryland State Forest Conservation Technical
 Manual. Although this method is not a regulatory requirement in Virginia, it provides an efficient

and comprehensive approach for cataloging and prioritizing forest resources. Priority 1 stands have wetlands, specimen trees of 30" diameter at breast height (dbh) or greater, intermittent or perennial streams, steep slopes, and/or other sensitive areas. Priority 2 may contain some elements listed for Priority 1 and/or have a designation of priority in a local land use plan, local forest conservation program, or other criteria adopted by a local forest conservation program. Priority 3 areas have evidence of increasing levels of human disturbance compared to Priority 1 and 2 areas.

7


8 Eight forest stands were identified within Proposed Action Site with seven designated Priority 1 9 (Stands 1-2 and 4-8), and one Priority 2 (Stand 3) (Figure 3-6). The stands support mature and 10 specimen trees and most contain wetlands and/or perennial streams. Overall, invasive species 11 coverage is relatively low with most occurrences in the ground cover layer. Tree canopy cover 12 ranges from 70-100 percent coverage with dominant cover types of tulip poplar (*Liriodendron* 13 *tulipifera*)/red maple (*Acer rubrum*) or oak (*Quercus* sp.)/hickory (*Carya* sp.).

14

15 Canopy and sub-canopy species include American beech (Fagus grandiflora), Northern red oak 16 (Quercus rubra), white oak (Quercus alba), scarlet oak (Quercus coccinea), southern red oak 17 (Quercus falcata), mockernut hickory (Carya tomentosa), black gum (Nyssa sylvatica), sassafras 18 (Sassafras albidum), American holly (Ilex opaca), sweetgum (Liquidambar styraciflua), pawpaw 19 (Asimina triloba), Virginia pine, and Loblolly pine (Pinus taeda). Understory species also include 20 muscle wood (Carpinus caroliniana), Eastern red cedar (Juniperus virginiana), and mountain 21 laurel (Kalmia latifolia). Herbaceous and woody species include cinnamon fern (Osmundastrum 22 cinnamomeum), common greenbrier (Smilax rotundifolia), huckleberry (Vaccinium 23 membranaceum), highbush blueberry (Vaccinium corymbosum), Indian cucumber-root (Medeola 24 virginiana), Jack-in-the-pulpit (Arisaema triphyllum), partridgeberry (Mitchella repens), poison ivy (Toxicodendron radicans), saw-toothed viburnum (Viburnum betulifolium), tick trefoil 25 26 (Desmodium spp.), and Virginia creeper (Parthenocissus quinquefolia). Invasive species include 27 Asiatic bittersweet (Celastrus orbiculatus), Japanese honeysuckle (Lonicera japonica), Japanese 28 stilt grass (Microstegium vimineum), multiflora rose (Rosa multiflora), and wisteria (Wisteria 29 sinensis). Further information about the methods and results of the survey are found in Appendix 30 D.

31

32 Fort Belvoir's Tree Removal and Protection Policy requires the protection of existing trees and, 33 where tree loss is unavoidable, mitigation for the removal of trees must be performed unless 34 expressly exempted. In-kind mitigation measures include replacing any trees four inches or greater 35 dbh that are removed with the planting of two new trees. Out-of-kind compensatory mitigation, 36 such as environmentally beneficial restoration, enhancement, or preservation measures may be completed if in-kind mitigation is not a feasible option (Fort Belvoir, 2018). Pursuant to the Tree 37 38 Removal and Protection Policy, a Tree Protection Plan must be prepared in accordance with Fort 39 Belvoir DPW requirements and included as part of the 35 percent design submittal for construction 40 projects.

1 2

Figure 3-6: Forest Stands

1 3.4.2 Wildlife

2

3 There have been multiple surveys on the wildlife at Fort Belvoir (Fort Belvoir, 2017). A wildlife 4 survey conducted on FBNA in 2006 found that mammals were predominantly white-tailed deer 5 (Odocoileus virginianus), Virginia opossums (Didelphis marsupialis), and gray squirrels (Sciurus 6 carolinensis) (U.S. Army, 2007). The Proposed Action Site primarily consists of upland and 7 wetland forests. These types of habitats support a variety of species found on Fort Belvoir 8 including the eastern chipmunk (Tamias striatus), southern flying squirrel (Glaucomys Volans), eastern cottontail (Sylvilagus floridanus), American beaver (Castor canadensis), and red fox 9 10 (Vulpes vulpes) (Fort Belvoir, 2017). Reptiles found in these habitats include eastern mud turtle 11 (Kinosternon subrubrum subrubrum), eastern rough green snake (Opheodrys aestivus aestivus), 12 and northern ringneck snake (Diadophis punctatus edwardsi). Accotink Creek, along with its 13 tributaries and associated floodplain wetlands, support amphibian species including spring peepers 14 (Pseudacris crucifer), American toads (Bufo americanus), Fowler's toads (Bufo woodhousii 15 fowleri), and bullfrogs (Rana catesbeiana).

16

17 3.4.3 Rare, Threatened and Endangered Species

18

19 Under the Endangered Species Act (ESA) of 1973, plant and animal species in danger of extinction 20 throughout all or a significant part of their range are listed as endangered. Species that are likely 21 to become endangered within the foreseeable future are listed as threatened. The USFWS is 22 responsible for administering the ESA for terrestrial and freshwater organisms, as may be found 23 within the Proposed Action Site and its vicinity. The ESA establishes the federal government's 24 responsibility for protection and recovery of species considered to be in danger of extinction. The 25 ESA requires federal agencies, in consultation with the USFWS to ensure that actions they authorize, fund, or carry out are not likely to jeopardize the continued existence of any listed 26 27 species or result in the destruction or adverse modification of designated critical habitat of such species. Critical habitat can include areas not occupied by the species at the time of the listing, but 28 29 are essential to the conservation of the species.

- 30
- 31 3.4.3.1 Federally Listed Species
- 32

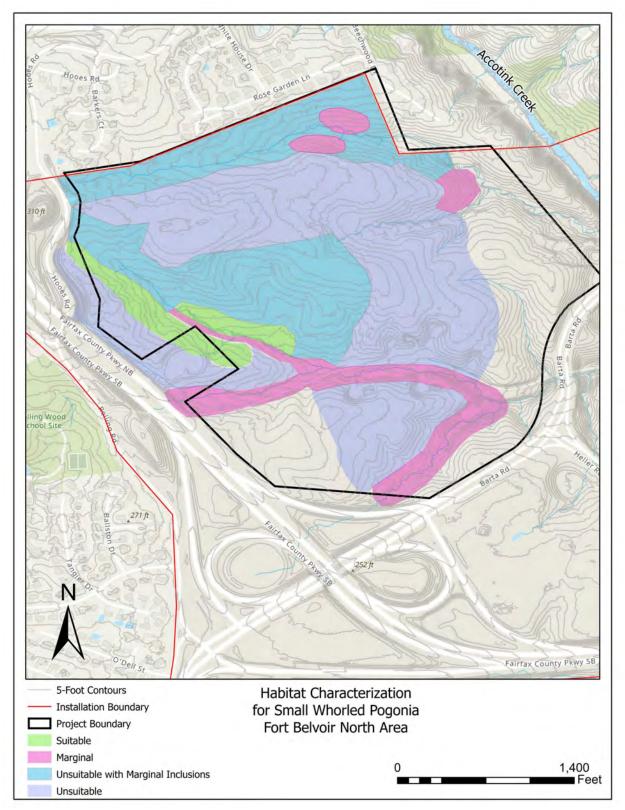
33 Section 7 of the ESA requires federal agencies to request of the Secretary information whether any 34 species which is listed or proposed to be listed may be present in the area of such proposed action 35 for any project that is conducted, permitted, funded, or licensed by any federal agency. According 36 to a screening of the Proposed Action Site using the USFWS' Information for Planning and 37 Conservation (IpaC) online tool, the northern long-eared bat (Myotis septentrionalis) (NLEB), 38 listed as a threatened species under the ESA, may occur in forested areas on or near the Proposed 39 Action Site (USFWS, 2022). No critical habitat has been designated for this species. White-nose 40 syndrome, a fungal disease known to affect bats, is the most severe and immediate threat to NLEB 41 survival and is the basis for the listing of the species as threatened. During the active season (April 42 1 to October 31), bats roost singly or in colonies in cavities, underneath bark, crevices, or hollows 43 of both live and dead trees and snags.

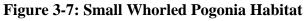
USFWS signed a Programmatic Biological Opinion (BO) 5 January 2016 on the Final 4(d) Rule that addresses effects to the NLEB by federal actions and provides a streamlined Section 7 consultation. USFWS has not yet designated critical habitat for NLEB. On May 24, 2022, a team of biologists from Fort Belvoir DPW Environmental Division conducted a field survey of the Proposed Action Site for the NLEB. Further information about the survey methods and results can be found in Appendix F.

7

8 The IpaC screening also lists small whorled pogonia (Isotria medeoloides) as potentially present 9 within the Proposed Action Site. The small whorled pogonia is an orchid listed as federally 10 threatened throughout its range and listed as state-endangered by the Commonwealth of Virginia. 11 In Virginia, small whorled pogonia is most typically found in deciduous second or third growth 12 successional hardwood forests with fairly sparse ground cover and highly acidic, nutrient-poor, 13 sandy loam soils, although plants have been found in a wider range of habitats in recent years. To 14 date, FBNA is the only location in Fairfax County, where the small whorled pogonia has been found (U.S. Army, 2007). The small whorled pogonia was observed in the summer of 2005 on 15 16 steep, oak-dominated forested slopes on a first order tributary of Accotink Creek in the 17 southwestern part of FBNA. Areas of FBNA that have been identified as potential suitable habitat 18 for the small whorled pogonia are along the western and southern boundaries of FBNA.

19


20 A team of biologists from the USACE Baltimore District, Fort Belvoir DPW, and a certified 21 surveyor from Coastal Resources, Inc. surveyed the area of FBNA identified as potentially suitable 22 habitat for small whorled pogonia on July 20-21, 2021. The habitat was categorized as 1) 23 unsuitable habitat with little or no potential to support small whorled pogonia due to the lack of 24 forest, early succession stage, very dense understory and herbaceous cover, or presence of 25 wetlands; 2) marginal habitat with mature habitat that have some potential to support small 26 whorled pogonia but lacking other characteristics of suitable habitat; and 3) suitable habitat with 27 a high potential to support small whorled pogonia, including mature forests on northerly or easterly 28 facing slopes with flat to moderate topography; the presence of species associated with small 29 whorled pogonia; acidic, sandy soils with low nutrients; an open understory and herbaceous layer; 30 and canopy openings such as a small stream, road, or dead/fallen trees that allow sunlight to reach the forest floor (Figure 3-7). 31


32

33 No small whorled pogonias were found during the habitat survey, although suitable (7.25 acres) 34 and marginal (16.76 acres) habitat were identified along the stream corridors (Figure 3-7). An 35 additional survey for the presence or absence of small whorled pogonia was conducted on June 36 21, 2022. Similar to the 2021 survey, no small whorled pogonias were located within the Proposed Action Site, but numerous colonies of common whorled pogonia (Isotria verticillata) were 37 38 documented within the suitable small whorled pogonia habitat along the southern, unnamed 39 tributary that flows southeast through the Proposed Action Site. Further information about the 40 survey methods and results can be found in Appendix E.

41

The monarch butterfly (*Danaus plexippus*) is also listed in the IpaC screening as a candidate species and under consideration for official listing. Although there are generally no Section 7 requirements for candidate species, USFWS encourages agencies to take advantage of opportunities that may conserve the species. Primary threats to the monarch include loss and

degradation of habitat, use of herbicides and pesticides, urban development, and climate change.
Conservation efforts include protection of the obligate milkweed plants (primarily *Asclepias* spp.),
which monarchs use for egg deposition and larvae feeding as well as other nectar resources for
adults. Critical habitat has not been designated for this species.

5 6

7

3.4.3.2 Birds of Conservation Concern

8 The USFWS IpaC screening identified seven species of Birds of Conservation Concern within the 9 Proposed Action Site that are protected under the MBTA. These include the black-billed cuckoo 10 (Coccyzus erythropthalmus), prairie warbler (Setophaga discolor), prothonotary warbler 11 (Protonotaria citrea), red-headed woodpecker (Melanerpes erythrocephalus), rusty blackbird 12 (Euphagus carolinus), and wood thrush (Hylocichla mustelina). The bald eagle (Haliaeetus 13 *leucocephalus*) is also identified as a Bird of Conservation Concern due to the special protections 14 afforded under the Bald and Golden Eagle Protection Act of 1940, however, there are no 15 documented bald eagle nesting areas on the Proposed Action Site.

16

17 3.4.3.3 State-Listed Species

18

19 The Commonwealth of Virginia has promulgated a state endangered species act that provides 20 endangered and threatened listings for species vulnerable to extinctions at the state level. The 21 Virginia statute (4 VAC 15-20-130) prohibits the taking, transportation, possession, sale, or offer 22 for sale within the state of any species listed on the federal endangered species list or any other 23 species designated by the state board. Virginia also provides protection for plant and insect species 24 through Chapter 10 §3.2-1000 of the Code of Virginia. It is the role of Virginia's Department of 25 Conservation and Recreation, Division of Natural Heritage to maintain listings and rarity (i.e., 26 conservation) rankings of rare plant and animal species and ecological communities. Unlike 27 endangered and threatened listings, rare species listings and their rankings are not legal 28 designations and do not provide any protective status, but, rather, are used to prioritize resources 29 for conservation.

30

31 Fort Belvoir has five state-listed animal species that occur on the installation, including the state-32 listed threatened wood turtle (*Glyptemys insculpta*), the state-listed threatened peregrine falcon 33 (Falco peregrinus), the state-listed endangered little brown bat (Myotis lucifugus), the state-listed 34 endangered tri-colored bat (Perimyotis subflavus), and the state and federally listed threatened 35 NLEB. Potential habitat for the wood turtle is primarily located along Accotink Creek and its 36 tributaries. However, this species is also known to traverse connected deciduous woodlands within 37 300 feet of resident waterways. The peregrine falcon has been regularly recorded on Fort Belvoir, 38 as it migrates through the regional area and takes advantage of foraging habitat along the Accotink 39 Creek/Accotink Bay stream corridor. The little brown bat and the tri-colored bat have an active 40 season similar to that of the NLEB. The conservation measures outlined by the Commonwealth of Virginia include time of year restrictions that fall within the bounds of restrictions already 41 42 established for the NLEB. Therefore, the conservation measures required for protection of the 43 NLEB would also be adequate for protection of the state-listed bat species. 44

1 3.4.4 Partners in Flight

3 The DoD PIF program uses a cooperative network of natural resources personnel from military 4 installations across the United States to sustain and enhance the military mission through proactive, 5 habitat-based conservation and management strategies that maintain healthy landscapes and 6 training lands (<u>https://partnersinflight.org/</u>). The DoD PIF uses voluntary partnerships at local, 7 state, regional, national and international levels to share information and develop ecosystem-based, 8 proactive management programs and programmatic priorities that aim to "keep common birds 9 common" and help recover species at risk. The USFWS, as well as state wildlife agencies such the 10 Virginia Department of Wildlife Resources (VDWR), through the state nongame program, are also 11 partners in this program.

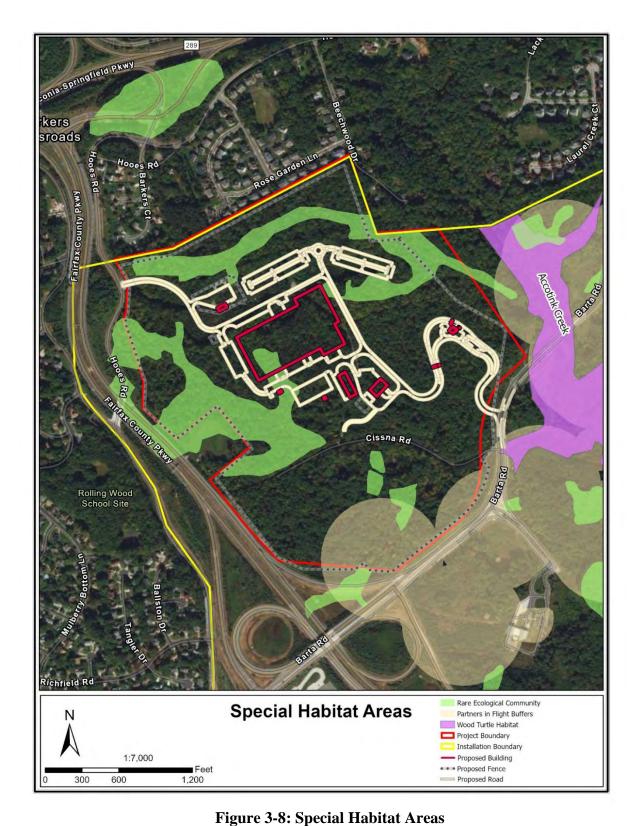
12

2

13 As part of the PIF Program, DoD installations are encouraged to incorporate elements of the 14 Partners in Flight Bird Conservation Strategy into their INRMPs. Such elements include habitat 15 management practices such as prescribed burning and timber management programs. Designation of regional PIF priority bird species is the result of a cooperative/coordinated effort among various 16 17 federal, state and private organizations. Fort Belvoir has designated approximately 4,200 acres of 18 PIF habitat within its boundaries, most of it within the 1,480-acre Accotink Bay Wildlife Refuge 19 along Accotink and Pohick Bays, and the 234-acre Jackson Miles Abbott Wetland Refuge along 20 Dogue Creek, both areas of high-quality habitat located within Main Post. These large areas of 21 habitat not only are valuable in and of themselves, but also provide for ecological connectivity 22 through the installation to other regional habitats (USACE, 2015).

22

24 PIF Species of Concern (SOC) status and applicable conservation guidelines are part of a broader designation identified by the INRMP as Fort Belvoir Breeding Birds of Management Concern, and 25 26 includes USFWS Birds of Conservation Concern, DoD PIF Mission Sensitive Species and Fort 27 Belvoir Habitat Indicator Species in addition to the PIF SOC for Bird Conservation Region 30 28 (New England/Mid-Atlantic Coast). The prairie warbler, wood thrush and scarlet tanager 29 (Piranga olivacea) are Fort Belvoir Breeding Birds of Management Concern species documented 30 on FBNA (USACE, 2017). Documented occurrences of these species include Geographic 31 Information Systems (GIS) mapping of a 500-foot buffer to provide protections for potential 32 nesting and foraging areas (Figure 3-8). FBNA supports approximately 396 acres of designated 33 habitat for PIF species (USACE, 2015). PIF management recommendations include maintaining 34 upland forest habitat (to support wood thrushes) and creating and maintaining successional/shrub-35 scrub habitat (to support prairie warblers) (Fort Belvoir, 2017).


36

37 3.4.5 Environmental Consequences38

39 40

3.4.5.1 Thresholds of Significance

The threshold of significance for biological resources would be exceeded if a proposed action would jeopardize the continued existence of any federally listed threatened or endangered species or result in destruction of critical habitat; decrease the available habitat for commonly found species to the extent that the species could no longer exist in the area; eliminate a sensitive habitat,

such as breeding areas, habitats of local significance, or rare or state-designated significant natural
 communities needed for the survival of a species; or substantially degrade or minimize habitat.

3

Potential impacts to plants, wildlife, and fish are evaluated in accordance with applicable regulations including, but not limited to, the ESA, the Fish and Wildlife Conservation Act of 1980, the MBTA, and EO 13112 on Invasive Species. The Sikes Act provides for cooperation by the Department of the Interior and DoD with state agencies in planning, development, and maintenance of fish and wildlife resources on military reservations throughout the U.S. The area of analysis for biological resources includes the Proposed Action Site.

10

11 3.4.5.2 Impacts of Proposed Action

12

13 <u>Vegetation</u>

14 Under the Proposed Action, short-term, less-than-significant adverse effects would occur on 15 vegetation. Removal of approximately 30 acres of vegetation for construction of the facilities and infrastructure under the Proposed Action would result in short-term, minor, adverse effects on 16 17 poplar/red maple and oak/hickory stand habitat on FBNA. This would be offset by a combination 18 of replanting within other areas of Fort Belvoir in accordance with Fort Belvoir's Tree Removal 19 and Protection Policy, requiring a 2:1 replacement ratio, since trees planted in urban forest 20 situations only survive for an average of seven years and trees being replaced are generally far 21 larger than trees planted as in-kind, in coordination with Fort Belvoir natural resources program 22 staff. A tree survey was conducted by a USACE biologist on 17 and 23-25 August 2021 to characterize and quantify the forest resources within the Proposed Action Site to support 23 24 determination of appropriate mitigation (see Appendix D). If it is not possible to plant the required 25 number of replacement trees, project-related alternatives such as environmentally beneficial 26 restoration, enhancement, or preservation measures may be done. DPW approval of out-of-kind, 27 compensatory mitigation is required, and funding must be equivalent to that required to plant the 28 remaining trees.

29

30 Following construction, the Proposed Action Site would be landscaped, per a DPW approved landscape plan, with grass, shrubs and tree species coordinated with the Fort Belvoir natural 31 32 resources program staff to ensure that no invasive species would be introduced, and planting 33 enhances wildlife habitat in a low-maintenance manner consistent with master planning objectives. 34 While the character of the area would change from that of a mixture of poplar/red maple and 35 oak/hickory stand habitat to a campus-like landscaped setting, some tree stands surrounding the 36 facility would be retained to provide a cover and shade vegetative buffer along streams and 37 wetlands. In addition, continued removal of invasive vegetative species and upkeep of desirable, 38 native species throughout the life cycle of the facility would also result in an overall long-term 39 beneficial effect.

- 40
- 41 <u>Wildlife</u>
- 42 Under the Proposed Action, short-term, less-than-significant adverse effects would occur on
- 43 wildlife. During construction of the Proposed Action, equipment noise, ground disturbance, and
- 44 vegetation removal would temporarily displace individuals of common wildlife species residing

in the LOD. There may be limited mortality to individuals that are not able to relocate during construction. Population-level impacts would not reasonably occur due to the relatively small size of the construction area in relation to the overall size of FBNA. Additionally, most mobile species are able to safely avoid equipment. Therefore, construction activities associated with the Proposed Action are expected to result in short-term, negligible, direct, adverse effects on terrestrial wildlife resources located within the immediate area.

7

8 To minimize impacts on birds, construction activities should avoid cutting and removal of 9 vegetation from 1 April to 15 July. If cutting and removal occurs during this time frame, a survey 10 for birds and active bird nests is recommended. No migratory bird, active nest, egg, or hatchling 11 should be disturbed, removed, damaged, or destroyed per the MBTA.

12

Following completion of construction, the Proposed Action Site would replace an undeveloped, infrequently used area with a distribution center that includes associated parking areas and security fencing. Wildlife accustomed to frequent human activity would use the new environment, while species requiring less disturbance and more secrecy would likely relocate. Planting of native vegetation near buildings and in open spaces within the campus would support habitat needs of species typically found within the vicinity of the Proposed Action Site and would serve as an extension of the stream corridor to the west of the developed area. The long-term adverse or

20 beneficial effects of operation of the Proposed Action on wildlife are expected to be negligible.

21

22 Rare, Threatened, & Endangered Species

23 Under the Proposed Action, short-term, less-than-significant adverse effects would occur to rare,

24 threatened, and endangered (RTE) species. The Proposed Action would occur in the former EPG

that has had some prior disturbance as an area supporting testing facilities and used as an

26 explosives and munitions training area with three former ranges (Ranges 5, 5a, and 5b).

27

28 The Proposed Action Site includes area mapped as potential habitat for the small whorled pogonia.

29 Consistent with standard practice in Virginia, the acceptable survey window for the small whorled

pogonia is between 1 June and 20 July. A survey was conducted within the Proposed Action Site
 on 21 June 2022. No small whorled pogonia were located within the Proposed Action Site. While

the small whorled pogonia has not been located on FBNA since 2005, suitable habitat has been

- identified within the Proposed Action Site and should be avoided to preserve the habitat of this
- 34 species (Appendix E).
- 35

36 Despite previous disturbance of the area, clearing of vegetation associated with construction under the Proposed Action could adversely impact protected species if pre-construction surveys are not 37 38 conducted. No wood turtle habitat has been identified within the Proposed Action Site. Should 39 wood turtle habitat be identified within the area, surveys for the presence of the wood turtle would 40 be conducted prior to site clearing, and the results of these surveys coordinated with Fort Belvoir 41 natural resources program staff and appropriate wildlife management agencies. Perimeter controls 42 would be installed during the winter months to exclude the endangered wood turtle from areas of 43 proposed construction activity, as necessary. To protect nesting bat species, no trees over three 44 inches in diameter would be removed within the Proposed Action Site between 15 April and 15

- 1 September, in accordance with current USFWS guidelines and corresponding U.S. Army NLEB
- 2 protection documents promulgated to protect the NLEB species (Appendix F).
- 3
- 4 <u>Partners in Flight</u>
- 5 Under the Proposed Action, short-term, less-than-significant adverse effects would occur on 6 Breeding Birds of Management Concern. Fort Belvoir Environmental Division staff would be 7 consulted to identify means to offset the loss of PIF habitat associated with the construction under
- 8 the Proposed Action.
- 9

10 3.4.5.3 Impacts of No Action Alternative

Under the No Action Alternative, existing conditions would remain and no impacts on vegetation,
wildlife, RTE species, or partners in flight would occur. Restoration plantings would not occur,
and FBNA would continue to provide habitat for species that rely on tulip poplar/red maple and
oak/hickory forest stand habitat. Maintenance of the area to prevent succession to invasive species
cover would be dependent on Fort Belvoir DPW.

17

18 3.5 HAZARDOUS AND TOXIC MATERIALS AND WASTE (HTMW)

19

20 3.5.1 Affected Environment

21 22 Hazardous and toxic materials or substances are generally defined as materials or substances that 23 pose a risk (i.e., through either physical or chemical reactions) to human health or the environment. 24 Regulated hazardous substances are identified through a number of federal laws and regulations. 25 The most comprehensive list is contained in 40 CFR 302, Designation, Reportable Quantities, and 26 Notification, and provides quantities of these substances that, when released to the environment, 27 require notification to a federal agency. Further, hazardous wastes, defined in 40 CFR 261.3, are 28 considered hazardous substances. Generally, hazardous wastes are discarded materials (e.g., solids 29 or liquids) not otherwise excluded by 40 CFR 261.4 that exhibit a hazardous characteristic (i.e., ignitable, corrosive, reactive, or toxic), or are specifically identified within 40 CFR 261. Petroleum 30 products are specifically exempted from 40 CFR 302, but some are also generally considered 31 32 hazardous substances due to their physical characteristics (i.e., especially fuel products), and their 33 ability to impair natural resources.

34

35 Fort Belvoir conducts its hazardous waste management program in compliance with the 36 Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 United States Code (U.S.C.) 9605, as amended by the Superfund Amendments and Reauthorization Act 37 38 of 1986 (SARA), Pub. L. 99-499. Fort Belvoir has a Hazardous Waste Management/Waste 39 Minimization Plan and a Master Spill Plan. Fort Belvoir also participates in the "Greening of 40 Government" program (EO 13101, "Greening" the Government through Waste Prevention) that promotes the purchase of products to reduce solid and hazardous waste through implementation 41 42 of a centralized system for tracking procurement, distribution, and management of toxic or hazardous materials. Fort Belvoir DPW Environmental Division also files annual hazardous 43

1 material and toxic chemical reports in compliance with the Emergency Planning and Community

2 Right-to-Know Act.

3

4 FBNA was used for the development and testing of military engineering equipment and supplies 5 in addition to providing training areas and storage for equipment and materials testing, mine 6 deployment and recovery, and demolition as part of EPG. The heaviest of activity was from the 7 1940s to the mid-1950s. Investigations and clean-up activities have been ongoing since 1989 and 8 have included the removal of munitions debris and non-munitions related debris as well as testing 9 and the removal of explosive compounds and associated residual contaminants (USACE, 2021a). 10 Investigations identified six SWMUs and five AOPCs within three former range sites (Range 5, 11 5a, and 5b) and adjacent areas within the Proposed Action Site. No soil or groundwater 12 contamination was found at a vehicle maintenance area (AOPC-1), a former bunker associated 13 with Building 2095 (SWMU M-22), and septic drain field associated with Building 2089 (SWMU 14 M-43). All debris, underground storage tanks, and buildings were removed, and the sites were issued NFAs in concurrence with USEPA (USEPA, 2017). 15

16

17 <u>Range 5</u>

Former Range 5 was approximately two acres and used for ordnance and munitions training (USACE, 2021a). The site was also reportedly used as a waste disposal area for ordnance, weapons, chemicals, and barbed wire. Investigative studies for MEC and associated residual explosive and inorganic contamination identified three AOPCs (AOPC-17, AOPC-18, AOPC-21). All MEC materials were removed at AOPC-17 and AOPC-18, and no explosives or soil contamination were found. The sites were closed, and an NFA issued in concurrence with USEPA (USEPA, 2017).

25

26 A Unilateral Administrative Order under RCRA, 42 U.S. Code Section 6934, required an 27 additional investigation on FBNA to determine the significance of the threat posed by the presence 28 of hazardous wastes, and included site AOPC-21 (Arcadis, 2019). Sources of contamination at the 29 site were waste containers, MEC items, and a TCE storage drum. MEC materials, waste containers, 30 and contaminated soil were removed between 2008 and 2010 and effectively eliminated the 31 potential for continued leaching of chemical constituents from the site to groundwater. However, elevated levels of COCs RDX and 2,4-DNT/2,6-DNT remain. Fort Belvoir is conducting biannual 32 33 groundwater sampling to monitor levels of COCs, and results indicate that concentrations are 34 declining to below maximum threshold levels. The site is managed through land use controls 35 (LUCs) including the restriction of groundwater usage.

- 36 27 Bana
- 37 <u>Range 5a</u>

Former Range 5a encompassed 1.1 acres and was used for explosives and steel cutting.
Investigative studies identified three SWMUs (M-32, M-33, M-34) and one AOPC (AOPC-19).
All MEC materials were removed at AOPC-19, and no explosives or soil contamination were

- 41 found. Munitions debris pits and contaminated soils were removed at M-34. AOPC-19 and M-34
- 42 were closed, and an NFA issued in concurrence with USEPA.
- 43

The MEC investigation and clearance was completed at sites M-32 and M-33. Contaminated soil
 was also identified at M-32 and removed. Elevated levels of COCs RDX and 2,4-DNT/2,6-DNT

were detected in the groundwater at M-32 and M-33. Biannual groundwater testing for COCs is
 conducted, and results submitted to VADEQ. The site is managed through LUCs including the
 restriction of groundwater usage for residential purposes.

- 4
- 5 <u>Range 5b</u>

Former Range 5b was approximately 4 acres and was used for landmine detonation and removal
training. Investigative studies for MEC and as part of the Military Munitions Response Program
(MMRP) identified one SWMU (SWMU M-35). A total of 353 pounds of MEC was removed
resulting in an assessment of complete clearance by the USACE Baltimore District (USACE,
2021a).

11

12 3.5.1.1 Installation Restoration Program

13 14 The Fort Belvoir Installation Restoration Program (IRP) operates in coordination with the U.S. 15 Army Environmental Command and USACE to restore former military training areas, waste sites, and petroleum areas through regulatory closure. The IRP is a comprehensive program designed to 16 17 address contamination from past activities and restore Army lands to useable conditions. It is one 18 of two programs established under the Defense Environmental Restoration Program (DERP) to 19 identify, investigate, and clean up hazardous substances, pollutants, and contaminants that pose 20 environmental health and safety risks at active military installations and formerly used defense 21 sites. The IRP was established in 1975 and is achieving successful restoration of more than 11,000 22 identified active Army environmental cleanup sites.

23

The IRP response actions (i.e., site identification, investigation, removal actions, remedial actions, or a combination of removal and remedial actions) correct other environmental damage (such as the detection and disposal of unexploded ordnance) that poses an imminent and substantial endangerment to the public health or welfare or to the environment. IRP actions are conducted according to the provisions of CERCLA, EOs 12580 and 13016, and the National Oil and Hazardous Substances Pollution Contingency Plan (40 CFR 300).

- 30
- 31 3.5.1.2 Munitions
- 32

33 Congress established the MMRP in 2001, under the DERP, to address munitions-related concerns, 34 including explosive safety, environmental, and health hazards from releases of unexploded 35 ordnance (UXO), discarded military munitions (DMM), and munitions constituents (MC) found 36 at locations other than operational ranges on active and BRAC installations and Formerly Used 37 Defense Sites (FUDS) properties. The MMRP provides a focused program to address the 38 challenges presented at sites called munitions response sites. Munitions responses are response 39 actions, including investigation, removal actions and remedial actions that address the explosives 40 safety, human health or environmental risks presented by UXO, DMM, and MC 41 (https://aec.army.mil/index.php?cID=365). Munitions response actions are conducted under the 42 process outlined in the National Contingency Plan (NCP) (40 CFR 300) as authorized by the 43 CERCLA.

1 Given its historical use and concentration of ranges and test areas, all of FBNA is considered a 2 Munitions Response Area site encompassing all former munitions, testing and training activities 3 within the FBNA boundary. The ranges on FBNA were used for mine warfare material testing, 4 research, and development as part of EPG. In 2006, the ten closed ranges on FBNA were 5 determined to be eligible for the DERP and were subsequently enrolled in the MMRP. Several 6 former FBNA training ranges were successfully cleared of ordnance and explosives from 2003 7 through 2005 in preparation for the proposed land transfer for the Fairfax County Parkway right-8 of-way. Subsequent clearance occurred between 2006 and 2010 for the areas outside of the right-9 of-way in support of the 2005 BRAC-related construction. Fort Belvoir developed a Focused 10 Feasibility Study (FFS) to evaluate remedial alternatives, as required by CERCLA (AECOM, 11 2021).

12

13 The 2021 FFS indicates Fort Belvoir will implement LUCs on FBNA. As part of the LUCs, all 14 future ground disturbances and construction activities are required to conduct munitions clearance per the Fort Belvoir DPW Best Management Practice memorandum (U.S. Army Garrison Fort 15 16 Belvoir Fort Belvoir, 2022). Once the full munitions clearance is complete for areas prior to 17 development, then the level of munitions clearance and construction support will depend on the 18 results of the full clearance and the recommendations of munitions experts on a case-by-case basis. 19 VADEQ will be notified of any MEC/DMM discovered during these activities (AECOM, 2021).

20

22

21 3.5.2 Environmental Consequences

23 3.5.2.1 Thresholds of Significance

24

25 Effects on hazardous materials and wastes are assessed by evaluating the degree to which the 26 Proposed Action could cause worker, resident, or visitor exposure to hazardous materials; whether 27 the Proposed Action would lead to noncompliance with applicable federal or state regulations or 28 increase the amounts generated or procured beyond current waste management procedures and 29 capacities; and whether the Proposed Action would disturb a hazardous waste site, create a 30 hazardous waste site, or contribute to a hazardous waste site resulting in adverse effects on human 31 health or the environment.

32

33 Effects from UXO would occur if military munitions are inadvertently encountered, causing an 34 unintended detonation or the release of munition chemicals to the environment.

35

36 3.5.2.2 Impacts of Proposed Action

37

38 Hazardous Materials and Waste

39 Under the Proposed Action, no significant impacts would occur on hazardous material and waste.

40 The construction contractor would be required to prepare and adhere to a Spill Prevention, Control,

41 and Countermeasures (SPCC) plan that identifies practices to minimize the potential for accidental

- 42 spills of petroleum products or other hazardous substances and the procedures for containing and
- 43 cleaning up any accidental spills that may occur.
- 44

Construction activities may require measures to prevent vapor intrusion below ground levels.
 Existing groundwater monitoring wells that would be impacted by construction activities would

Existing groundwater monitoring wells that would be impacted by construction activities would
 be capped and removed. Re-establishment of the monitoring well network would be coordinated

4 with Fort Belvoir DPW.

5 6

7

8

9

10

11

Implementation of the Proposed Action would not result in a significant effect on hazardous materials and waste concerns within the Proposed Action Site. Soils excavated or otherwise disturbed during the project's construction phase would be tested in accordance with established Fort Belvoir policies and procedures. If concentrations of contaminants in soils are determined to exceed applicable regulatory thresholds for re-use on the site, any affected soils would be removed from the site and disposed of at a permitted facility off FBNA in accordance with Virginia Solid

12 Waste Disposal Regulations as well as all other federal, state, and local laws and regulations.

- 13
- 14 <u>Munitions</u>

15 Under the Proposed Action, no significant impacts would occur from munitions. As previously 16 described, LUCs require all future ground disturbances and construction activities to complete

munitions clearance. Prior to construction of the Proposed Action, munitions clearance would be
 conducted and coordinated with Fort Belvoir DPW and the VADEQ. The Proposed Action would

have a long-term, beneficial effect by alleviating safety concerns related to possible munitions remaining on the surface or buried near the surface through screening of the project area prior to construction. In addition, standard practice involves training of on-site personnel in the identification of potential munitions to prevent injury from unintentional detonations due to incorrect handling of discarded ordnance materials.

24

25 3.5.2.3 Impacts of No Action Alternative

26

The No Action Alternative would have no effect on hazardous and toxic materials and waste on FBNA. LUCs prohibit extraction of groundwater for potable use and development of the site into another use unless determined to be compatible with applicable LUC policies and the Fort Belvoir ADP. However, efforts to identify potentially buried munitions within the LOD would not occur until such future time, when the area could be developed.

33 3.6 UTILITIES

34

35 **3.6.1** Affected Environment

36

37 3.6.1.1 Electricity

38

39 Electrical power is provided to FBNA by Dominion Energy using a 34.5-kilovolt (kV) distribution 40 infrastructure, including a substation on the southern portion of FBNA and a network of overhead 41 and buried cables. Dominion Energy entered into a 50-year Utilities Privatization services contract 42 with Fort Belvoir in 2007, under which Dominion Energy is responsible for operation and 43 maintenance of the electrical distribution infrastructure, as well as upgrades. As of 2016, more 44 than 112 miles of overhead and underground electric line, three switching stations, and one substation were present on Fort Belvoir. Dominion Energy also owns and operates medium-sized emergency diesel generators to provide back-up power for critical-functions throughout the installation. There are no generating stations on FBNA that would be capable of powering the entire post.

5 6

7

3.6.1.2 Potable Water and Wastewater

8 Potable water on FBNA is purchased from Fairfax County Water. No treatment facilities or 9 groundwater wells supply potable water on post. The majority of the water distribution system on 10 FBNA is owned by American Water under a 50-year utilities privatization contract to provide 11 domestic water and wastewater services.

12

The water distribution system was designed with the intent and capacity to support the full buildout of the FBNA campus. A 1.5-million-gallon water storage tank that serves FBNA is located north of Barta Road. There is a connection to Fairfax County Water that traverses the Proposed Action Site from Fairfax County Parkway to Barta Road.

17

18 Wastewater for the FBNA is collected by a 14-inch diameter line that runs to the Fairfax County19 Sewer stub-out at the south end of the campus.

20

21 3.6.1.3 Natural Gas

22

Washington Gas operates the natural gas distribution system serving FBNA, since a privatization contract was issued in 1998. There are no natural gas production storage facilities on the installation. As of 2016, the natural gas distribution system has a network of approximately 120 miles of pipes. The existing gas distribution on FBNA is a high-pressure gas system with an 8inch pipe that enters from the south side of the installation and runs west along Heller Road, where it connects to the NGA facility's utility plants line. Fort Belvoir can receive approximately 160 million cubic feet per day of natural gas through two delivery points.

30

31 3.6.2 Environmental Consequences

32

33 3.6.2.1 Thresholds of Significance34

Effects on utilities would be considered significant if an overload of the capacity of existing utilities were to occur to the extent that current levels of service are compromised, resulting in outages or shutdown of water or wastewater service.

- 38
- 39 3.6.2.2 Impacts of Proposed Action
- 40 41 Elec
- 41 <u>Electricity</u>
 42 Under the Proposed Action, less-than-significant, long-term adverse effects would be expected
- 43 from additional energy consumption. The electrical distribution system is new and in good
- 44 condition with sufficient capacity for additional loading. Dominion Energy is responsible for

1 operation and maintenance of the electrical distribution center as well as upgrades. An emergency

- 2 backup generator based on size load and including 48 hours of dedicated diesel-fuel supply would
- 3 be required for the distribution center.
- 4
- 5 <u>Wastewater</u>
- Less-than-significant, long-term adverse effects on wastewater are expected under the Proposed
 Action due to additional wastewater generation from construction and operation of the distribution
 center. The current usage of water is only 1/3 of the maximum usage available on the installation
 (HDR, 2020). The water distribution system on FBNA was designed to accommodate future
 development and is considered to be in good working condition. There is connection to Fairfax
 County Water that traverses the Proposed Action Site from the Fairfax County Parkway to Barta
- 11 Count 12 Road.
- 13

14 The wastewater system was designed in anticipation of a full build-out of the FBNA campus and, 15 therefore, has the capacity to accommodate the wastewater generated by construction and 16 operation of the Proposed Action. Low-flow toilets, sinks and showers would be installed wherever

- possible to minimize impacts on water. Potable water and fire suppression will be supplied by at
- 18 least an 8-inch diameter service pipe and a redundant 6-inch diameter pipe. A fire hydrant loop
- 19 around the facility would be provided.
- 20
- 21 <u>Natural Gas</u>
- Under the Proposed Action, less-than-significant, long-term adverse impacts would occur on
 natural gas distribution. No system problems or capability issues would be expected. Construction
 and operation of the distribution center would increase the natural gas demands of the current
 system; however, it was built expansion in mind and is more than adequate to support increased
 natural gas demands.
- 27
- 28 3.6.2.3 Impact of No Action Alternative29
- Under the No Action Alternative, no impacts would be expected on any utilities. All operations on
 FBNA would remain the same, with no fluctuations in utility demands.

33 **3.7 NOISE**

34

35 3.7.1 Affected Environment

36

Noise is generally defined as unwanted sound. It can be any sound that is undesirable because it interferes with communications or other human activities, is intense enough to affect hearing, or is otherwise annoying. Noise may be intermittent or continuous, steady, or impulsive. Human response to noise varies, depending on the type of the noise, distance from the noise source, sensitivity, and time of day.

42

The decibel (dB) is a unit of measurement for noise levels and uses a logarithmic scale. To better
 match the sensitivity of the human ear, noise levels are typically A-weighted (dBA) to

- deemphasize low-frequency and very high-frequency sound. For low-frequency sounds such as
 artillery fire, noise levels are often C-weighted (dBC) to evaluate the presence of low-frequency
 sound.
- 4

5 This noise section uses two common environmental noise metrics. The equivalent-average sound 6 level (LEQ) represents an average sound level in decibels of a given event or period of time 7 (typically one hour). The day-night average sound level (DNL) represents a 24-hour LEQ with a 8 10-dBA penalty applied to nighttime hours when sleep interference is more likely (10pm to 7am).

9 10

11

3.7.1.1 Applicable Noise Regulations

12 The Noise Control Act of 1972 (42 United States Code [USC] §4901, et seq.) directs federal 13 agencies to comply with applicable federal, state, interstate, and local noise control regulations. 14 The applicable local noise control regulation is the Fairfax County noise ordinance (Chapter 15 108.1), which states "no person shall permit, operate, or cause any source of sound or sound generation to create a sound which exceeds the limits set forth in the following table titled 16 17 'Maximum Sound Levels' when measured at the property boundary of the sound source or at any point within any other property affected by the sound" (County of Fairfax, 2021). As shown in 18 19 Table 3-2, the maximum sound levels from continuous sound sources (such as an air handling unit) 20 in residential areas should not exceed 60 dBA during the day and 55 dBA at night. An impulsive 21 sound (or impulse sound) is generally characterized by a sound event that lasts for no more than 22 one second, such as sounds from weapons, pile drivers, or blasting.

23 24

 Table 3-2: Fairfax County Noise Ordinance (County of Fairfax, 2021)

Use and Zoning District	· ·	Maximum Sou	ind Levels (dBA)
Classification	Time of Day	Continuous Sound	Impulse Sound
Residential Areas in Residential Districts	7am to 10pm	60	100
Residential Areas in Residential Districts	10pm to 7am	55	80

25

32

33

34

37

- Construction, repair, maintenance, remodeling, demolition, grading, or other improvement of real property is prohibited outdoors between the hours of 9pm and 7am from Sunday through Thursday and between the hours of 9pm and 9am on Fridays, Saturdays, and the day before a federal holiday.
 - Loading or unloading trucks outdoors within 100 yards of a residential dwelling is prohibited between the hours of 9pm and 6am.
- Section 108.1-5-1 of the Fairfax County noise ordinance contains some specific exceptionsrelevant to the Proposed Action:
 - Emergency work is exempt from the provisions of Chapter 108.1.
 - Motor vehicles on road right-of-way are exempt from the provisions of Chapter 108.1.

Section 108.1-4-1 of the Fairfax County noise ordinance contains some specific prohibitions
 relevant to the Proposed Action:

- Construction, repair, maintenance, remodeling, demolition, grading, or other improvement
 of real property is exempt from the provisions of Chapter 108.1, but such activity shall not
 generate noise levels exceeding 90 dBA in residential areas and shall not begin before 9am
 on Saturdays, Sundays, and federal holidays.
- Back-up generators are exempt from the provisions of Chapter 108.1 during power outages from storms and other emergencies. Routine testing and maintenance of back-up generators are exempt from the provisions of Chapter 108.1 between the hours of 7am and 9pm, and are prohibited from occurring at other hours. Additionally, the duration of routine testing and maintenance events shall not exceed two consecutive or non-consecutive hours in any one day.
- 11

12 Land use guidelines identified by the Federal Interagency Committee on Urban Noise are used to 13 determine compatible levels of noise exposure for land use planning and control. Chapter 14 of 14 AR 200-1 implements federal regulations associated with environmental noise from Army 15 activities (U.S. Army, 2007). There are three Noise Zones (I, II, and III), which correlate to increasing noise levels (see Table 3-3). These zones are established based on the DNL over a 16 period of 250 days for Active Army Installations and 104 days for Army Reserve and National 17 18 Guard Installations. Additionally, there is the Land Use Planning Zone (LUPZ), which is the 19 portion of Noise Zone I exposed to noise levels within 5 dB of Noise Zone II levels. One additional 20 noise metric relevant to this discussion is the PK 15(met), which is the peak, unweighted noise 21 level expected to be exceeded by 15 percent of all events that might occur.

22 23

 Table 3-3: Noise Limits Definitions (U.S. Army, 2007)

Noise Zone	DNL Limit for Aviation Sources (dBA)	DNL Limit for Impulsive Sources (dBC)	PK 15(met) Limit for Small Arms (dB)
LUPZ (Land Use Planning Zone)	60-65	57-62	N/A
Ι	Less than 65	Less than 62	Less than 87
II	65-75	62-70	87-104
III	More than 75	More than 70	More than 104
* dBA = decibels, A-weighted ,dBC =	decibels, C-weighted ,dBP = decibe	els, unweighted	

²⁴ 25

26 The nearest potential noise-sensitive receptors (NSR) to the Proposed Action Site on FBNA are 27 the North Belvoir Child Development Center (CDC) and the existing National Geospatial-28 Intelligence Agency (NGA) offices, located east of the Proposed Action Site and Accotink Creek 29 (U.S. Army, 2021). A residential area is located north of the Proposed Action Site outside the 30 FBNA boundary. The Proposed Action Site is relatively isolated from areas to the west by Fairfax 31 County Parkway and areas to the south by Barta Road. The major thoroughfare of Interstate-95 (I-95) is located approximately 1.25 miles to the east of the Proposed Action Site. Currently, the 32 33 major noise source in the project vicinity is generated from vehicular traffic on Fairfax County 34 Parkway, Barta Road, and I-95. The Davison Army Airfield (DAAF) is located approximately 2.5 35 miles to the south of the Proposed Action Site and is an additional noise source from airplane and 36 helicopter takeoffs and landings.

1 3.7.1.2 Existing Noise Levels

2

3 The Proposed Action Site is not located within the 65 dBA DNL areas for any nearby airports and 4 airfields; therefore, aircraft-related noise is anticipated to be less than 65 dBA DNL. Noise 5 measurements documented existing, outdoor noise levels from March 8 to 11, 2022, at two 6 locations on the north end of the Proposed Action Site. Measurement Location (ML) 1 is in the 7 northwest corner of the Proposed Action Site and is representative of residential NSRs north of 8 the site that are closer to Fairfax County Parkway. ML2 is in the northeast corner of the Proposed 9 Action Site and is representative of residential NSRs north of the site that are further from Fairfax 10 County Parkway. The measurements were taken via Type 1 digital sound level meters and a Type 11 1 handheld calibrator. The microphones were protected using wind screens and were positioned away from reflecting surfaces. Table 3-4 summarizes the noise measurement results at ML1 and 12 13 ML2.

14

_	-
1	_
	٦.
	J

	Table 3-4:	Noise Measureme	ent Results	
Measurement Location	Measured Overall Equivalent- Average Sound Level (LEQ) (dBA)	Measured Hourly LEQ at Daytime (dBA)	Measured Hourly LEQ at Night (dBA)	Measured Overall DNL (dBA)
ML1	54	45-65	39-59	58
ML2	49	44-55	39-56	55

16 17

22

* dBA = decibels, A-weighted; Daytime = 7 a.m. to 10 p.m.; Nighttime = 10 p.m. to 7 a.m.

ML1 was, on average, louder than ML2, which is to be expected for the location closer to Fairfax County Parkway. The measured noise levels during quieter periods were similar between the two locations. With reference to Table 3-3, the site would be classified as Noise Zone I because the measured DNL was below the transportation noise DNL threshold of 65 dBA at both locations.

23 3.7.2 Environmental Consequences 24

25 3.7.2.1 Threshold of Significance

Impacts on the noise environment from a proposed action or alternative would be consideredsignificant if any of the following were to occur:

29 30

31

32

33 34

- Construction activities during prohibited hours or generating noise levels exceeding 90 dBA in residential areas.
- Back-up generators operating in a manner prohibited by Fairfax County.
- Typical operations generating noise levels exceeding the Fairfax County limits.
- Typical operations changing the Proposed Action Site from Noise Zone I to Noise Zone II or III.
- 35 36

3.7.2.2 Impacts of Proposed Action 1 2

3 The Proposed Action would introduce new noise sources during construction and operations, 4 resulting in short- and long-term, less-than-significant, adverse impacts on the noise environment. 5

6 Construction

7 Construction under the Proposed Action would result in elevated noise levels due to operation of 8 heavy equipment on site. The noise levels generated at any given time would vary depending on 9 the phase of construction, the specific activities occurring, the types of equipment used, and the 10 quantities used. Construction activity would generally only occur between the hours of 7:00am 11 and 3:30pm, Monday through Friday, which would comply with the construction schedule 12 requirements of the Fairfax County noise ordinance.

13

14 Table 3-5 summarizes calculated construction noise levels for representative activities that 15 generate higher noise levels. The calculations assumed those representative equipment types would all operate at the same location for each activity.

- 16
- 17 18

	ulated Construction	DII INDISE LEVEIS	
Activity (Equipment Types)	Hourly LEQ at 100 feet (dBA)	Hourly LEQ at 250 feet (dBA)	Hourly LEQ at 500 feet (dBA)
Peak Hour Traffic (auto, truck)	85	77	71
Mobilization (excavator, dozer, skid steer loader, truck)	84	76	70
Tree Removal / Grubbing (dozer, scraper, excavator, crane, truck)	85	77	71
Earthwork & Site Development (dozer, grader, excavator, truck)	85	77	71
Base Building Construction (crane, concrete saw, truck)	82	74	68

Table 3-5. Calculated Construction Noise Levels

19

20 At 100 feet, the calculated hourly LEQs for the representative construction activities would be 21 below 90 dBA. The primary site features associated with the Proposed Action are more than 100

22 feet from the FBNA property boundary. Based on the estimates of representative activities,

23 construction noise is not anticipated to exceed 90 dBA in residential areas.

24

25 Therefore, construction noise is projected to have a short-term, less-than-significant, adverse 26 impact.

27

28 Operations

- 29 Operation of the Proposed Action would introduce new or additional noise sources to the Proposed
- 30 Action Site, including automobiles, trucks, electric forklifts, rooftop units, transformers, a diesel
- 31 fire pump, and generators. The mobile and stationary noise sources associated with the Proposed
- 32 Action were modeled using the industry-accepted 3-D environmental noise software Computer
- 33 Aided Noise Abatement (CadnaA), with calculation methods from the International Organization

for Standardization (ISO) 9613-2 "Acoustics – Attenuation of Sound during Propagation Outdoors" (ISO, 1996). The model was based on peak hour traffic volumes and representative stationary equipment noise emissions data. The model calculated hourly LEQs assuming all typical operations sources would operate simultaneously (generators excluded), with the electric forklifts excluded at nighttime hours. Table 3-6 summarizes the results of the typical operations noise model (Appendix I).

- 7
- 8

Location	Highest Modeled Hourly LEQ at Daytime (dBA)	Highest Modeled Hourly LEQ at Night (dBA)	Highest Modeled DNL (dBA)
North FBNA Boundary (residential parcels)	52	43	52
West FBNA Boundary (residential parcels)	55	38	53
South FBNA Boundary (industrial parcels)	47	28	45
FBNA NGA Remote Inspection Facility	50	34	49
FBNA NGA Headquarters	48	35	47

Table 3-6: Calculated Typical Operations Noise Levels

9

10 All modeled daytime hourly LEQs are below the Fairfax County daytime limit of 60 dBA, and all

11 modeled nighttime hourly LEQs are below the nighttime limit of 55 dBA. The modeled daytime

and nighttime hourly LEQs are within the range of existing hourly LEQ's measured at ML1 and
 ML2. The modeled DNLs are below the measured DNLs from ML1 and ML2; therefore, the site

ML2. The modeled DNLs are below the measured DNLs from ML1 and ML2; therefore, the site
 would be anticipated to remain classified as Noise Zone I during operations.

14

The generators were not included in the typical operations noise model as they would only operate during emergency conditions or for maintenance events. The maintenance events would only occur between the hours of 7:00 a.m. and 9:00 p.m. with a total duration in any one day not to exceed two hours, which would comply with the Fairfax County exemption for generator noise.

20

24

Therefore, operational noise is projected to have a long-term, less-than-significant, adverse impact.

23 3.7.2.3 Impacts of No Action Alternative

Under the No Action Alternative, the Proposed Action would not occur. The Proposed Action Site
would remain in its existing condition. The existing noise environment would not change;
therefore, the No Action Alternative would have no impact on the noise environment.

- 29 30
- 31
- 32

1 2

3.8 AIRSPACE

3 **3.8.1** Affected Environment

The Davison Army Airfield (DAAF), which is approximately 2.5 miles south of the Proposed
Action Site, occupies approximately 400 developed acres of land west of Fairfax County Parkway.
The mission of the DAAF is to transport passengers and freight for the Army and DoD to, from,
and within the NCR.

9

10 The Federal Aviation Administration (FAA) secures specific airspace and zones at and around 11 airports through Federal Aviation Regulation (FAR) Part 77 (14 CFR 77), Safe, Efficient Use, and 12 Preservation of the Navigable Airspace, and FAA Advisory Circular 50/5300-13A, Airport 13 Design. The areas defined in these regulations protect specific airspace and ground areas at and 14 near airports. FAR Part 77 defines five types and dimensions of navigable airspace (imaginary 15 surfaces) existing on and around a public airport, which must be kept free of obstructions and development that would conflict with air traffic so that aircraft may have a clear path for landing. 16 17 These imaginary surfaces, shown in Figure 3-9 for DAAF, are the:

18 19

20

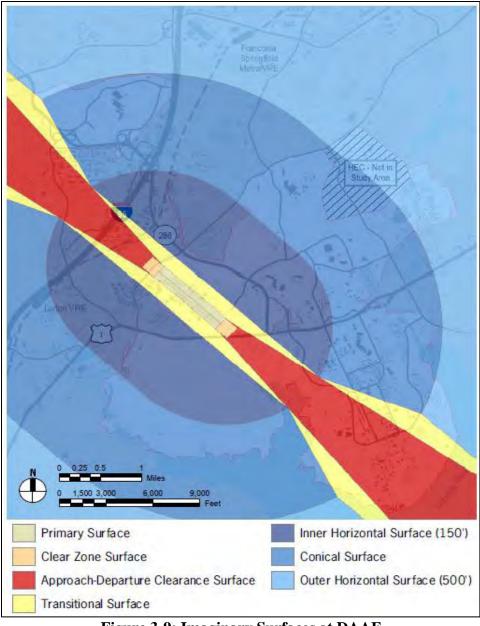
21

22

23 24

25

26


27

28

29

- 1) Primary Surface airspace at ground-level elevation that is aligned on the runway centerline and extending 200 feet beyond the end of the runway,
- Approach Surface airspace aligned on the runway extended centerline that slopes up and outward from the end of the primary surface. The approach surface, considered the most critical among imaginary surfaces, must be clear of all objects to ensure safe landing.
 - Transitional Surface airspace that extends out and slopes 7:1 upward from the sides of an airport and the primary surfaces of its runways and the approach surfaces at the runway ends,
- 4) Horizontal Surface airspace that extends out from the transitional surface and upward to an elevation of 150 feet above the airfield, and
 - 5) Conical Surface airspace that extends out and slopes upward from the edge of the horizontal surface to an elevation of 350 feet above the airfield.
- 30 31

32 FAA Advisory Circular 50/5300-13A establishes airport design standards with specified clear, or 33 obstacle-free zones, and safety areas along and just beyond the extents of an airport runway and 34 taxiway to protect aircraft during takeoffs and landings (FAA, 2022). Building height restrictions 35 are governed by guidelines and regulations relating to the identification and construction of 36 obstructions within airspace (FAR Part 77). Building restrictions within the imaginary conical 37 surface at the runway begin at 150 feet directly above the runway at the boundary with the inner 38 horizontal surface and extend outward at a slope of 20:1 (horizontal: vertical) for a distance of 39 7,000 feet to an elevation of 500 feet above the airfield. Therefore, a building constitutes an 40 obstruction to navigation if it extends 150- to 500-feet above ground level or runway elevation up 41 to 3 miles from the runway (NOAA, 2022). The Proposed Action Site falls largely within the inner 42 horizontal surface of DAAF, with a small portion within the transitional surface and outer 43 horizontal surface (see Figure 3-9). The proposed buildings would constitute an obstruction to 44 navigation if they were greater than 150 feet in height.

Figure 3-9: Imaginary Surfaces at DAAF Source: U.S. Army Garrison Fort Belvoir, 2015

> 6 7

11

12

3.8.2 Environmental Consequences

3.8.2.1 Threshold of Significance

8
9 The Proposed Action and No Action Alternative were evaluated against the following significance
10 criteria to determine if they would result in a significant impact on the airspace environment:

- Airspace would be obstructed by building heights.
 - Aircraft operations would be substantially altered to accommodate new construction.

2 3.8.2.2 Impacts of Proposed Action

3 4 Under the Proposed Action, less-than-significant impacts to airspace would occur. The Proposed 5 Action would construct a two-story administration building and a one-story high bay warehouse 6 as the tallest structures. Because these buildings would be located approximately 2.5 miles north 7 of the runway at DAAF and the associated imaginary conical surface and would not exceed 150 8 feet, the buildings would remain within the vertical limits of the applicable airspace restrictions 9 and below the height of the adjacent NGA complex. No obstruction to airspace and no changes in 10 aircraft operations would occur.

11

1

12 3.8.2.3 Impacts of No Action Alternative 13

14 Under the No Action Alternative, no changes would be expected to airspace. No buildings would 15 be constructed, and all operations on FBNA would remain the same, with the same aircraft operations and airspace available. 16 17

18 **AIR QUALITY** 3.9

19

20 3.9.1 Affected Environment

21

22 Air quality is defined by the ambient air concentration of specific pollutants of concern at a given 23 location. Air pollution occurs when harmful substances, including solid particles and gases, are 24 introduced into the earth's atmosphere. It can cause harm to the natural environment, including 25 humans, animals, and plants. The following sections describe existing air quality conditions in the vicinity of the Proposed Action Site on FBNA, applicable laws and regulations, and potential 26 27 impacts on air quality that could result from the implementation of the Proposed Action.

28

29 3.9.1.1 NAAQS

30

34

35

31 The USEPA, under the requirements of the 1970 Clean Air Act (CAA) as amended in 1977 and 32 1990, established National Ambient Air Quality Standards (NAAQS) for the following six criteria 33 pollutants (40 CFR 50):

- Carbon monoxide (CO)
- Lead
- 36 Nitrogen dioxides
- 37 • Ozone (O_3)
- 38 Sulfur dioxide
- 39 Particulate matter (PM), divided into two size classes: 40
 - \circ Measured less than or equal to 10 micrometers in diameter (PM₁₀)
 - \circ Measured less than or equal to 2.5 micrometers in diameter (PM_{2.5})
- 41 42

43 CO, sulfur oxides (SO_X), and some particulates are emitted directly into the atmosphere from 44 emissions sources. Nitrogen dioxide, O₃, and some particulates are formed through atmospheric

and chemical reactions that are influenced by weather, ultraviolet light, and other atmospheric processes. Volatile organic compounds (VOCs) and nitrogen oxides (NOx) emissions are precursors of O₃ and are used to represent O₃ generation. Lead emissions from common air emissions sources that would be used under the Proposed Action have been negligible since leaded gasoline for on-road vehicles was phased out in the United States between 1973 and 1996. Therefore, lead is not included in the air quality analysis.

8 The NAAQS include primary and secondary standards. The primary standards were established at 9 levels sufficient to protect public health with an adequate margin of safety. The secondary 10 standards were established to protect the public welfare from the adverse effects associated with 11 pollutants in the ambient air. Each state has the authority to adopt air quality standards stricter than 12 those established under the federal NAAQS. The Commonwealth of Virginia accepts the federal 13 standards (9 VAC Chapter 30). Table 3-7 shows the federal primary and secondary air quality 14 standards accepted by the Commonwealth of Virginia.

15 16

7

Criteria Pollutant	Primary/ Secondary	Averaging Time	Level	Form
СО	Primary	8-hour	9 ppm	Not to be exceeded more than once per
	1 milar y	1-hour	35 ppm	year
	Primary	1-hour	100 ppb	98th percentile, averaged over 3 years
NOx	Primary and secondary	Annual	53 ppb	Annual Mean
O 3	Primary and secondary	8-hour	0.070 ppm	Annual fourth-highest daily maximum 8-hr concentration, averaged over 3 years
	Primary	Annual	$12 \ \mu g/m^3$	Annual mean, averaged over 3 years
PM _{2.5}	Secondary	Annual	$15 \ \mu g/m^3$	Annual mean, averaged over 3 years
	Primary and secondary	24-hour	$35 \ \mu g/m^3$	98th percentile, averaged over 3 years
\mathbf{PM}_{10}	Primary and secondary	24-hour	150 μg/m ³	Not to be exceeded more than once per year on average over 3 years
Lead	Primary and secondary	Rolling 3- month average	0.15 μg/m ³	Not to be exceeded
SOx	Primary	1-hour	75 ppb	99th percentile of 1-hour daily maximum concentrations, averaged over 3 years
SUX	Secondary	3-hour	0.5 ppm	Not to be exceeded more than once per year

 Table 3-7: National Ambient Air Quality Standards

17 Sources: 40 CFR 50, 9 VAC Chapter 30

18 Notes: ppm = parts per million; ppb = parts per billion; $\mu g/m^3$ = micrograms per cubic meter

Areas that are and have historically been in compliance with the NAAQS or have not been evaluated for NAAQS compliance are designated as attainment areas. Areas that violate a federal air quality standard are designated as nonattainment areas. Areas that have transitioned from nonattainment to attainment are designated as maintenance areas and are required to adhere to maintenance plans to ensure continued attainment.

6

FBNA is in Fairfax County, which is within the National Capital Interstate Air Quality Control
Region (40 CFR 81.12). The USEPA has designated Fairfax County as marginal nonattainment
for the 2015 8-hour O₃ NAAQS and as maintenance for the 2008 8-hour O₃ NAAQS. Fairfax
County is designated as attainment or unclassified for all other criteria pollutants (USEPA, 2022a).

11

12 3.9.1.2 Clean Air Act Conformity

The CAA, as amended in 1990, requires state agencies to develop and adopt a State Implementation Plan to target the elimination or reduction of the severity and number of NAAQS violations in nonattainment areas. Federal agencies are required to ensure that their actions conform to the State Implementation Plan in a nonattainment area. Under Section 176(c) of CAA, a project is in "conformity" if it corresponds to a State Implementation Plan's purpose of eliminating or reducing the severity and number of violations of the NAAQS and achieving their expeditious attainment.

21

23

24

25

26 27

22 Conformity further requires that such activities would not:

- cause or contribute to any new violations of any standards in any area;
- increase the frequency or severity of any existing violation of any standards in any area; or
 - delay timely attainment of any standard or any required interim emission reductions or other milestones in any area.

28 The USEPA published final rules on general conformity (40 CFR 51 and 93) in the Federal 29 Register on November 30, 1993. The General Conformity Rules applies to federal actions in 30 nonattainment or maintenance areas for any of the criteria pollutants. There are two main 31 components to the overall process: a conformity applicability analysis to determine whether a 32 conformity determination is required and, if it is, a conformity determination to demonstrate that 33 the action conforms to the State Implementation Plan. A conformity applicability analysis is 34 typically done by quantifying applicable direct and indirect emissions that are projected to result 35 from implementation of a federal action. When the total emissions of nonattainment and 36 maintenance pollutants (or their precursors) exceed specified thresholds, a general conformity 37 determination is required. The emissions thresholds that trigger requirements for a general 38 conformity determination are called *de minimis* levels. A federal action is exempt from a general 39 conformity determination if the action's emissions for a particular criteria pollutant are below the 40 pollutant's de minimis threshold.

41

42 Fairfax County is designated as nonattainment for the 2015 8-hour O₃ NAAQS and as maintenance

- 43 for the 2008 8-hour O₃ NAAQS. Therefore, the General Conformity Rule is potentially applicable
- 44 to emissions of VOCs and NO_X because they are precursors for O_3 . As outlined in 40 CFR

93.153(b), the applicable *de minimis* level thresholds for these pollutants is 50 tons per year (tpy)
 for VOCs and 100 tpy for NOx.

2 3 4

5

3.9.1.3 Hazardous Air Pollutants

6 In addition to criteria pollutant standards, USEPA also regulates hazardous air pollutant (HAP) 7 emissions for each state. HAPs differ from criteria pollutants for they are known or suspected to 8 cause cancer and other diseases or have adverse environmental impacts. The National Emission 9 Standards for Hazardous Air Pollutants regulate 188 HAPs based on available control technologies. Sources of HAP emission on FBNA include stationary, mobile, and fugitive 10 11 emissions sources. Stationary sources include boilers, incinerators, fuel storage tanks, fuel-12 dispensing facilities, vehicle maintenance shops, laboratories, degreasing units, and similar testing 13 units. Mobile sources of emissions include private and government-owned vehicles.

Greenhouse gases (GHGs) are compounds that contribute to the greenhouse effect.

14

17

15 *3.9.1.4 Greenhouse Gas Emissions and Climate Change* 16

- 18 greenhouse effect is a natural phenomenon where gases trap heat within the surface-troposphere 19 (lowest portion of Earth's atmosphere) system, causing heating at the Earth's surface. The primary 20 long-lived GHGs directly emitted by human activities are carbon dioxide (CO₂), methane, nitrous 21 oxide, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. The heating effect from 22 these gases is considered the probable cause of the global warming observed over the last 50 years 23 (USEPA, 2009). Global warming and climate change can affect many aspects of the environment. 24 In the past, the USEPA has recognized potential risks to public health or welfare and signed an 25 endangerment finding regarding GHGs under Section 202(a) of the CAA (74 Federal Register 26 66496, December 15, 2009), which found that the current and projected concentrations of the six 27 key well-mixed GHGs in the atmosphere threaten the public health and welfare of current and 28 future generations. To estimate global warming potential, all GHGs are expressed relative to a 29 reference gas, CO₂, which is assigned a global warming potential equal to one (1). All six GHGs are multiplied by their global warming potential, and the results are added to calculate the total 30 31 equivalent emissions of CO₂ (CO₂e). However, the dominant GHG emitted is CO₂, accounting for 32 80 percent of all GHG emissions as of 2019, the most recent year for which data are available 33 (USEPA, 2022b). Current GHG emission sources on FBNA include combustion engines, boilers,
- 34 chillers, and water heaters.
- 35

36 One of the key ways the DoD achieves reduction in GHG emissions in building construction and 37 operation is through the Leadership in Energy and Environmental Design (LEED) certification 38 program, an internationally recognized green building certification system providing third-party 39 verification that a building or community was designed and built using measures to reduce energy 40 and water use, GHG emissions and the amount of construction waste sent to landfills. The Energy 41 Independence and Security Act of 2007 requires federal agencies to use a green building 42 certification system for new construction and major renovations of buildings. Pursuant to DoD 43 policy, the Proposed Action will be designed to achieve an LEED rating of Silver. The guiding 44 principles for sustainability for the Proposed Action are the 2016 Guiding Principles for

The

Sustainable Federal Buildings and Determining Compliance with the Guiding Principles for
 Sustainable Federal Buildings, 2018 International Green Construction Code, UFC 3-600-01,
 Energy Star Energy Efficiency Labeling System (FEMP), and 40 CFR 247 Comprehensive
 Procurement Guideline for Products Containing Recovered Materials.

5

EO 13990, signed January 20, 2021, reinstated the final guidance issued on August 5, 2016 by the
CEQ that required federal agencies to consider GHG emissions and the effects of climate change
in NEPA reviews. DoD has committed to reduce GHG emissions from non-combat activities 42
percent by 2025 (DoD, 2016). Accordingly, estimated CO₂e emissions associated with the

- 10 Proposed Action are provided in this EA for informative purposes.
- 11

Fort Belvoir is required to report to USEPA through the electronic GHG tool (e-GRRT) as the installation has exceeded 25,000 metric tons per year for CO₂e for the last five years. Current GHG emission sources at Fort Belvoir include combustion engines, boilers, chillers, and water heaters.

- The total CO₂e for Fort Belvoir is inclusive of Main Post and FBNA. FBNA sources however only
- 16 account for 0.1 percent (natural gas) of the total 27,366.02 metric tons CO₂e for calendar year 2020
- (DIA, 2021). The emission total is the amount reported annually under the requirements of 40 CFR
- 18 98 and does not include GHG emissions from mobile sources or emergency generators.
- 19
- 20 3.9.1.5 Emissions Reporting
- 21

Title V of the CAA requires states and local agencies to permit major stationary sources. As a
major stationary source for emissions, Fort Belvoir (Main Post) operates under a Title V Permit
(Registration Number 70550, issued on March 21, 2003). Fort Belvoir also operates under a minor
New Source Review (mNSR) permit for Main Post (same Registration Number 70550).

26

27 The Title V and mNSR permits for Main Post do not apply to FBNA emission sources, as this area 28 is non-contiguous from Main Post and considered a separate source. Stationary emission sources 29 on FBNA include large boilers, generators, heaters, above ground storage tanks and emergency 30 generators. FBNA emission sources are operated under a separate synthetic mNSR air permit 31 (Registration Number 73630). Emissions limits for stationary sources, as directed by the mNSR 32 permit, are included in Table 3-8. As a synthetic minor source, the FBNA annual update report 33 does not include the requirement for an emission statement. The FBNA annual update report 34 provides specific total throughput (million cubic feet burned and/or gallons burned) for the 35 permitted equipment. However, as a requirement of the permit, Fort Belvoir Air Quality Program maintains a rolling 12-month total for the criteria pollutant emissions from FBNA sources, as 36 37 found in Table 3-8. There are no existing emissions sources within the Proposed Action Site. Any new equipment with the potential to emit would be evaluated for permitting thresholds prior to 38 39 purchase and installation. Should the final design require it, a new permit would be obtained to 40 account for future stationary sources, as warranted.

		202	U			
	SO _X	CO	PM ₁₀	PM _{2.5}	NO_2	VOCs
mNSR Emissions Limits	3.1	35.5	4.3	None	75.0	7.0
2020 FBNA Emissions	0.15	1.65	0.25	0.25	6.31	0.35

Table 3-8: mNSR Emissions Limits and Emissions from Stationary Sources (tpy) for CY2020

3 Source: Fort Belvoir, Air Quality Program4

3.9.1.6 Sensitive Receptors

5 6

1

2

CEQ NEPA regulations require evaluation of the degree to which the Proposed Action affects public health (40 CFR 1508.27). Children, elderly people, and people with illnesses are especially sensitive to the effects of air pollutants; therefore, hospitals, schools, convalescent facilities, religious facilities, and residential areas are considered sensitive receptors for air quality impacts, particularly when located within one mile from the emissions source. Within a one-mile radius of the Proposed Action Site is the North Belvoir CDC located on FBNA, as well as several schools, residential areas, and senior living facilities adjacent to FBNA.

14

15 3.9.2 Environmental Consequences16

17 *3.9.2.1 Threshold of Significance* 18

19 The threshold of significance for air quality impacts would be exceeded if the Proposed Action20 were to result in any of the following:

- Exceedance of the applicable General Conformity Rule *de minimis* level thresholds;
- Increase of criteria pollutant emissions to levels above permitted source thresholds; or
- Meaningful contributions to the potential effects of global climate change.
- 23 24

21

22

25 Based on compliance with the NAAQS, the General Conformity Rule is potentially applicable to 26 emissions of VOCs and NOx in Fairfax County. The applicable de minimis thresholds for these 27 pollutants is 50 tpy for VOCs and 100 tpy for NO_X (40 CFR 93.153[b]). While the General Conformity Rule is not applicable to emissions of CO, SO_X, PM_{2.5}, and PM₁₀, an insignificance 28 29 indicator of 250 tpy, defined as the USEPA Prevention of Significant Deterioration threshold, can 30 be used to provide an indication of the significance of potential impacts to air quality. The 250 tpy threshold indicator does not denote a significant impact; however, it does provide a threshold to 31 32 identify actions that have insignificant impacts to air quality.

33

34 3.9.2.2 Impacts of Proposed Action35

36 <u>Construction</u>

37 Short-term, minor, adverse impacts on air quality would result from the construction of the

38 warehouse and administrative building. Emissions of criteria pollutants and GHGs would be 39 directly produced from activities such as operation of heavy equipment; heavy duty diesel vehicles

40 hauling construction materials and debris to and from the project site; workers commuting daily

to and from the project site in their personal vehicles; and ground disturbance. All such emissions
would be transitory in nature and would only occur when such activities are occurring. The
estimated annual emissions for construction under the Proposed Action are summarized in Table
3-9.

5 6

Table 3-9: Estimated Ann	ual Air	Emissi	ons iroi	n the P	roposea	Action	
Year	VOC	NO _x	CO	SO _x	PM ₁₀	PM _{2.5}	CO ₂ e
2022							
Construction of Distribution Center	0.439	2.772	2.385	0.007	65.188	0.113	691.8
and Administrative Building							
2023							
Construction of Distribution Center	0.900	6.138	5.390	0.017	65.231	0.226	1,735.2
and Administrative Building							
2024							
Construction of Distribution Center							
and Administrative Building	6.875	3.265	2.890	0.016	0.191	0.189	2,507.3
Heating for Buildings							
Operation of Emergency Generators							
2025 and later							
Heating for Buildings	0.198	3.616	2.944	0.024	0.270	0.270	4,153.3
Operation of Emergency Generators							
General Conformity de minimis	50	100	250^{1}	250^{1}	250^{1}	250^{1}	N/A
Thresholds	50	100	230	230	230	230	1N/A

Table 3-9: Estimated Annual Air Emissions from the Proposed Action
--

7 Note: ¹ The 250 tpy Prevention of Significant Deterioration threshold, as defined by USEPA, was

8 used as an insignificance indicator for emissions of CO, SO_X, PM₁₀, and PM_{2.5}.

9 Key: N/A = not applicable

10

11 The air pollutant of greatest concern is particulate matter, such as fugitive dust, which is generated 12 from ground-disturbing activities and combustion of fuels in construction equipment. The quantity 13 of uncontrolled fugitive dust emissions from a construction site is proportional to the area of land 14 being worked and the level of activity. Fugitive dust emissions would be greatest during initial site 15 preparation activities and site grading and would vary from day to day depending on the work phase, level of activity, and prevailing weather conditions. In accordance with 9 VAC 5-40-90, 16 17 construction contractors would be required to take reasonable precautions to prevent particulate matter from becoming airborne. BMPs and environmental control measures (e.g., wetting the 18 19 ground surface) would be incorporated at construction areas to minimize fugitive dust emissions. 20 In addition, work vehicles would be well-maintained and use diesel particulate filters to reduce 21 emissions of criteria pollutants. These BMPs and environmental control measures could reduce 22 uncontrolled particulate matter emissions from a construction site by approximately 50 percent.

23

Construction associated with the Proposed Action would produce a total of 2,857.7 tons (2,592 metric tons) of CO₂e. By comparison, 2,592 metric tons of CO₂e is approximately the GHG

26 footprint of 558 passenger vehicles driven for 1 year or 504 homes' energy use of 1 year (USEPA,

1 2022c). In 2019, Virginia produced 103.2 million metric tons of CO₂ emissions (USEIA 2018). 2 Assuming all CO₂e emissions from construction are from CO₂, emissions from construction under 3 the Proposed Action would represent less than 0.003 percent of the total CO₂ emissions from the 4 state. As such, air emissions produced during construction would not meaningfully contribute to 5 the potential effects of global climate change and would not notably increase the total CO₂ 6 emissions produced by the State.

7

8 Climate patterns and foreseeable climate trends in the northeast, such as increased average 9 temperatures, increase in the frequency and intensity of flooding and drought events, and 10 disruption of vegetative ecosystems, are unlikely to affect the U.S. Army's ability to implement 11 the Proposed Action, and the Proposed Action would not appreciably contribute to the regional 12 (i.e., northeastern United States) impacts from global climate change because of insignificant CO₂e 13 emissions compared to the total emissions produced by the state. Therefore, climate change would 14 not likely affect the ability for the Proposed Action to be implemented.

- 15
- 16 <u>Operation</u>

17 Long-term, negligible, adverse impacts on air quality would occur from operational air emissions 18 associated with the Proposed Action. Operational air emissions would be produced from the

19 natural gas-fired boilers for the proposed buildings and from the emergency generators near the

warehouse and entry control facility. Total estimated annual air emissions from operation of thewarehouse and administrative building are summarized in Table 3-9.

22

23 Emissions from the heating system and emergency generators at the proposed buildings would not 24 increase the installation's potential to emit above permitted emissions limits, and the capacities of 25 the systems is likely to be low enough that they would not need to be added to the mNSR permit 26 as stationary sources. If determined that such equipment would require permitting, FBNA's mNSR 27 permit could be modified to include the proposed boilers and emergency generators. However, 28 these facilities may require permitting by the facility end user. In such case, the boilers and 29 emergency generators would be permitted under a separate mNSR permit. In either event, the 30 proposed emissions from these facilities, combined with the potential to emit for FBNA, would 31 not exceed major source thresholds.

32

Operation of the warehouse and administrative building would produce 4,153.3 tons (3,767.8 metric tons) of CO₂e, which is equivalent to the GHG footprint of 812 passenger vehicles driven for 1 year or 475 homes' energy use for 1 year (USEPA, 2022c). Assuming all CO₂e operational emissions are from CO₂, operational emissions would represent less than 0.005 percent of the total CO₂ emissions from the state. As such, air emissions produced during operation of the warehouse and administrative building would not meaningfully contribute to the potential effects of climate

- 39 change and would not noticeably increase the total CO₂ emissions produced by the state.
- 40
- 41 <u>General Conformity</u>
- 42 Emissions of VOCs and NOx during the construction phase would be less than their respective *de*
- 43 *minimis* level thresholds of 50 tpy for VOCs and 100 tpy for NO_X. Emissions of CO, SO_X, PM_{2.5},
- 44 and PM_{10} would be less than the insignificance threshold of 250 tpy. In addition, the annual
- 45 emissions from operation of the warehouse and administrative building would not exceed the de

minimis level thresholds or insignificance thresholds of any criteria pollutant (see Table 3-7). 1 2 Therefore, a general conformity determination is not required and no significant impacts would 3 occur. The U.S. Army has prepared a Record of Non-Applicability (RONA) for CAA conformity 4 (see Appendix G).

5 6

7

3.9.2.3 Impacts of No Action Alternative

8 Under the No Action Alternative, air quality conditions would remain the same as described in 9 Section 3.9.1 and no short- or long-term impacts on air quality would occur. Air emissions from construction and operation of a warehouse and administrative building on FBNA would not occur. 10

12 **3.10 TRAFFIC**

13

11

14 3.10.1 Affected Environment

15

16 This section describes the existing road network serving the Proposed Action on FBNA. A Traffic

17 Impact Study (TIS) was conducted to evaluate existing conditions and the potential impacts of the

18 Proposed Action to traffic patterns in the vicinity (see Appendix H). Four key intersections were

19 identified in the traffic study area. Turning Movement Counts (TMCs) and roadway volume counts

20 were conducted at the four locations shown in Figure 3-10. March 2022 traffic data was collected

21 at four intersections along Barta Road to support the development of the TIS. This data was used

22 to amend previously acquired counts collected in March 2021 for the DIA annex project.

23

Figure 3-10: Count Locations for Existing Conditions

1 Level of Service Standards

2 Level of Service (LOS) is a qualitative measure describing operational traffic conditions, and the

- 3 perception of these conditions by drivers or passengers. These conditions include factors such as
- 4 speed, delay, travel time, freedom to maneuver, traffic interruptions, comfort, convenience, and
- 5 safety. Levels of service are given letter designations from A to F, with LOS A representing the
- best operating conditions (free flow, little delay) and LOS F, the worst (congestion, long delays).
 Generally, LOS A and B are considered high level of service, LOS C and D are considered
- 8 moderate, and LOS E and F are considered low. In general, the standards are LOS D in urban areas
- 9 and LOS C in rural areas.
- 10 The results of the operations analysis using Synchro are provided in Table 3-10.
- 11 12

Table 3-10: Existing Intersection Operational Analysis - FBNA

Intersection		Signalizad	am	pm	am	pm
ID	Intersection	Signalized (Y/N)	Delay (s/veh)		LOS	
		(-/- //				
В	Barta Road / Heller Road	Y	2.5	0.4	Α	A
С	West Gate Entrance	Ν	-	-	А	Α
D	Barta Road / Parking Garage Exit	Y	0.0	9.5	Α	Α
E	Barta Road / Main Guest Access	Ν	-	-	А	Α
F	Barta Road / GEOINT Drive	Y	5.5	10.	Α	В
				4		
G	Barta Road / Heller Road	Y	9.8	0.4	А	Α
Н	Barta Road / Backlick Road	Y	7.9	18.	А	В
				9		
Ι	Heller Road / HOV Entrance Ramp	Ν	-	-	Α	Α
J	I-95 Exit Ramp / Heller Road	Ν	-	-	А	Α
K	South Gate Entrance	N	-	-	А	Α
Р	Barta Road / Rolling Road	Y	8.3	9.3	А	Α
Q	Barta Road / South Bound VA 286	Y	6.2	8.4	А	Α
	Ramps					
R	Barta Road / North Bound VA 286	Y	9.0	11.	А	В
	Ramps			9		

13

- 14 As shown in the table above, all intersections are operating at LOS B or better.
- 15 <u>Transit</u>
- 16 There are three bus transit routes that pass near Fort Belvoir and FBNA, including Route 171,
- 17 Route 335, and REX (Richmond Highway Express). Routes 171 and 335 are operated by the
- 18 Fairfax Connector, and the REX is operated by Washington Metropolitan Area Transit
- 19 Authority.
- 20
- 21
- 22

1 <u>Non-motorized Facilities</u>

Sidewalks and pedestrian crossings are present near the Proposed Action Site, but few pedestrian
movements were noticed during the traffic counts. Surrounding streets do not have marked bicycle
lanes, and no bicycle movements were observed during the traffic counts.

5 6

3.10.2 Environmental Consequences

7

3.10.2.1 Thresholds of Significance

8 9

10.2.1 Thresholds of Significance

Roadway traffic resulting from operations of the Proposed Action could result in changes to the
 LOS provided by existing road systems. Key issues of concerns regarding potential traffic impacts
 of the Proposed Action include:

- Maintaining a LOS on affected roadways that meets an acceptable standard
 - Minimizing the effect of 600 additional employees at the Access Control Points
- 15 serving FBNA.
- 16

13

14

- 17 3.10.2.2 Impacts of Proposed Action
- 18

The distribution center construction is estimated to generate 600 additional staff positions. The analysis assumes that each additional staff member generates 0.9 additional AM and PM peak hour trip for 600 additional staff (distribution center) and one additional am and pm peak hour trip for each 650 additional staff (DIA Annex). In addition, 18 truck trips have been modeled for both the am and pm peak hours. The distribution between site access points was determined utilizing the

- 24 March 2021 count data.
- 25 <u>Peak Period Vehicular Traffic Impacts</u>
- 26 Based on the traffic operational results, FBNA would be able to accommodate the existing site
- traffic and the anticipated additional traffic generated by the distribution center and the DIA Annex (Table 3, 11): therefore, impacts would be less than significant
- 28 (Table 3-11); therefore, impacts would be less-than-significant.
- 29

Table 3-11: Build Condition (2023) Intersection Operational Analysis

Int.		Signalized (Y/N)	600 Added Personnel (DC) + 650 Added Personnel (DIA)			
ID.	Intersection	nal Y/J	am	pm	am	pm
		Sig (Delay (s/veh)		LOS	
Α	New Entrance / Barta Road	Y	4.9	22.7	А	С
В	Barta Road / Heller Road	Y	4.6	0.9	А	А
С	West Gate Entrance	Ν	-	-	А	А
D	Barta Road / Parking Garage Exit	Y	0.1	7.7	А	А
Е	Barta Road / Main Guest Access	Ν	8.7	11.4	А	В
F	Barta Road / GEOINT Drive	Y	5.8	66.3	А	Е
G	Barta Road / Heller Road	Y	9.8	4.7	А	А
Η	Barta Road / Backlick Road	Y	8.5	22.2	А	С

Int.		Signalized (Y/N)	600 Added Personnel (DC) + 650 Added Personnel (DIA)			
ID	Intersection	gna. (Y/)	am	pm	am	pm
		Sig	Delay (s/veh)		LOS	
Ι	Heller Road / HOV Entrance Ramp	Ν	-	-	А	Α
J	I-95 Exit Ramp / Heller Road	Ν	-	-	А	А
K	South Gate Entrance	Ν	-	-	А	Α
Р	Barta Road / Rolling Road	Y	8.8	9.7	А	А
Q	Barta Road / South Bound VA 286	Y	7.8	9.4	А	Α
	Ramps					
R	Barta Road / North Bound VA 286	Y	27.7	11.3	С	В
	Ramps					

1

Increased vehicle traffic may affect some intersections outside of the study area. The project traffic
traveling through those intersections is expected to result in a small (less than 1 percent) increase
in traffic at those intersections. The project trips associated with this project are not expected to
affect the LOS of those intersections significantly.

6

7 Pedestrian and Bicycle Operations

8 Pedestrians are provided shared phasing with appropriate traffic phases. No impacts are expected

along Barta Road. Additional connections to the new distribution facility may be appropriate with
 connection across Barta Road.

11

12 Proposed Design Features Intended to Reduce Impacts

From the analysis results, possible roadway and intersection improvements were identified to mitigate operational impacts that were degraded to LOS E. Potential mitigation is discussed below.

- 15 pm North B Geoint Drive to both EB & WB Barta Road
- 16 17
- Mitigation Signal optimization and additional turn lane for increased turn volumes.

Based on the modeling results, the existing roadway system build scenario operates at acceptable levels with the construction of the distribution center and added personnel. Low LOS at Geoint Drive in the pm would only be anticipated with the construction of the DIA Annex. LOS E is also expected only for exiting vehicles from existing Geoint Drive.

- 22
- 23 3.10.2.3 Impacts of No Action Alternative
- 24
- Currently, the primary users of FBNA are government employees of NGA and their visitors. No
 growth in background traffic volumes in the study area would result from the No Action
 Alternative.

28 29

1 **3.11 CULTURAL AND HISTORIC RESOURCES** 2

3 3.11.1 Affected Environment

5 Several federal laws and regulations-including the NHPA of 1966, as amended, the 6 Archaeological and Historic Preservation Act of 1974, the American Indian Religious Freedom 7 Act (AIRFA) of 1978, the Archaeological Resource Protection Act of 1979 (ARPA), and the 8 Native American Graves Protection and Repatriation Act (NAGPRA) of 1990-have been 9 established to manage cultural resources. Cultural resources include "historic properties" as 10 defined by the NHPA, "cultural items" as defined by NAGPRA, "archaeological resources" as defined by the ARPA, "sacred sites" as defined by EO 13007 to which access is afforded under 11 12 AIRFA, and collections and associated records as defined in 36 CFR 79.

13

4

Archaeological resources consist of locations where prehistoric or historic activity measurably altered the earth or produced deposits of physical remains. Architectural resources include standing buildings, districts, bridges, dams, and other structures of historic significance. Traditional cultural properties include locations of historic occupations and events, historic and contemporary sacred and ceremonial areas, prominent topographical areas that have cultural significance, traditional hunting and gathering areas, and other resources that Native Americans or other groups consider essential for the persistence of their traditional culture.

21

22 The NHPA outlines federal policy to protect historic properties and promote historic preservation 23 in cooperation with other nations, tribal governments, states, and local governments. Sections 106 24 and 110 of the NHPA require federal agencies to identify, evaluate, inventory, and protect historic 25 properties (i.e. those listed or eligible for listing in the National Register of Historic Places [NRHP]) that are under their jurisdiction and control. Federal agencies must delineate the Area of 26 27 Potential Effect (APE) within which impacts from a proposed action may occur, identify historic 28 properties present within the APE, assess the potential effects of the undertaking on those historic 29 properties and consider ways to avoid, minimize, or mitigate any adverse effects. The APE is the 30 geographic area in which an undertaking may directly or indirectly cause changes in the use or 31 character of a historic property. An undertaking is any federal action with the potential to affect 32 historic properties. Federal agencies are further required to initiate consultation with the State 33 Historic Preservation Officer (SHPO) for actions that may impact historic properties. VDHR 34 serves as the SHPO in Virginia.

35

The APE for the Proposed Action is defined as the study area outlined in Figure 2-1 plus a 1-mile buffer surrounding the Proposed Action Site to account for any potential effects on the viewshed of historic districts in the vicinity.

- 39
- 40 *3.11.1.1 Site History*
- 41

The Army acquired FBNA (formerly EPG) in the early 1940s to support the Research,
Development and Engineering Center for the testing of a wide range of engineering equipment
and supplies, including methods and equipment for the deployment, detection, and neutralization

of landmines. The Army used EPG for these purposes from the 1940s through the 1970s (U.S. 1 2 Army, 2007), with the highest level of activity at EPG occurring during the 1940s to the mid-3 1950s. Commercial and residential encroachment in the vicinity of FBNA in the 1960s and 1970s 4 contributed to the reduction of testing activities at this location. 5 6 The Proposed Action Site was used as a MEC training area known as Range 5 (Arcadis, 2019). 7 The range has since been closed and allowed to regenerate to natural areas. At the site, there are 8 abandoned ammunition storage magazines and other buildings associated with the former training 9 activities. 10 11 3.11.1.2 Archaeological Resources in the APE 12 13 In compliance with Section 110 of the NHPA, an archaeological survey was completed for the entire FBNA in 1993, and no archaeological properties eligible for the NRHP were identified 14 15 (MAAR Associates, 1993). To date, only one archaeological resource, an isolated prehistoric artifact, has been discovered on FBNA, but evaluated as not eligible for the NRHP (New South 16 17 Associates, 2007). 18 19 3.11.1.3 Architectural Resources in the APE 20 21 A comprehensive architectural survey of all extant properties on FBNA was completed in 2006 22 and none were eligible for the NRHP, nor listed on any state or local resister (Fort Belvoir, 2014a). 23 The findings of this report were reviewed and concurred by Virginia SHPO. Further, a review of 24 the Fairfax County Inventory of Historic Sites, current Fairfax County Historic Overlay Districts, 25 the Virginia Landmarks Register, and the NRHP indicated that no listed resources or historic 26 overlay districts are in close proximity to the Proposed Action Site or FBNA (U.S. Army, 2007). 27 28 Based on the information provided above, Fort Belvoir has concluded that no historic properties 29 exist within the APE or in close proximity.

- 30
- 31 3.11.2 Environmental Consequences
- 32
- 33 3.11.2.1 Thresholds of Significance34

Significant impacts on cultural resources would occur if potential resources that have not been previously documented are not properly identified, consultation pursuant to Section 106 is not completed, or impacts on viewsheds within the APE buffer are not appropriately considered and addressed.

- 39
- 40 3.11.2.2 Impacts of Proposed Action
- 41
- 42 No effects on cultural resources are anticipated from the Proposed Action. The Proposed Action
 43 Site has been previously disturbed, as a result of its use for testing activities and munitions ranges,
- since its inception as a testing ground in the 1940s with subsequent ground disturbance from

contamination testing and removal actions. No eligible archaeological or architectural resources 1 2 exist within the APE for the Proposed Action on FBNA. In terms of potential effects to viewsheds 3 of historic districts in the project vicinity, the project is consistent with the campus-style 4 environment found across Fort Belvoir. The distribution center would be designed in accordance 5 with applicable installation design guidelines, including the Fort Belvoir Master Plan. The site is 6 surrounded by stands of second-growth pines and hardwood forest that provide a visual screen for 7 off-site properties.

- 8 9 In accordance with Section 106 of the NHPA, consultation was initiated with the Virginia SHPO 10 (VDHR) and Fort Belvoir received concurrence from the SHPO on the determination of "no
- historic properties affected." A record of this consultation is included in Appendix A. 11
- 12

13 Additionally, should cultural artifacts be inadvertently discovered during construction operations 14 of the Proposed Action, the inadvertent discovery plan described in Fort Belvoir's Integrated

- Cultural Resources Management Plan (ICRMP) would be implemented to ensure notifications are 15 16 made to appropriate personnel and VDHR.
- 17
- 18 3.11.2.3 Impacts of No Action Alternative 19
- 20 No effects on cultural resources are anticipated from the No Action Alternative. 21

22 3.12 SOCIOECONOMICS, ENVIRONMENTAL JUSTICE, and PROTECTION OF 23 **CHILDREN**

24 25

26

3.12.1 Affected Environment

27 3.12.1.1 Socioeconomics 28

29 Socioeconomic factors are defined by the interaction or combination of social and economic 30 factors. The relevant factors related to the Proposed Action include population and housing, 31 economic development, and quality of life/health and safety issues.

32

33 The Region of Influence (ROI) for socioeconomic characteristics encompasses Fairfax County, 34 Virginia. This ROI includes the installation and the immediately surrounding communities that have direct and indirect socioeconomic relationships with the installation, because distribution 35 36 center staff may potentially live in this county and military personnel may frequent commercial 37 establishments outside the installation.

- 38
- 39 3.12.1.2 Environmental Justice
- 40
- 41 Environmental justice addresses the race, ethnicity, and poverty status of populations within the
- 42 ROI. On February 11, 1994, President Clinton issued EO 12898, Federal Actions to Address
- 43 Environmental Justice in Minority Populations and Low-Income Populations to focus the attention 44
- of federal agencies on the human health and environmental conditions in minority and low-income

1 communities. EO 14008, *Tackling the Climate Crisis at Home and Abroad*, signed by President 2 Biden on January 27, 2021, further strengthens EO 12898 by requiring that "Agencies shall make 3 achieving environmental justice part of their missions by developing programs, policies, and 4 activities to address the disproportionately high and adverse human health, environmental, climate-5 related and other cumulative impacts on disadvantaged communities, as well as the accompanying 6 economic challenges of such impacts."

7

8 Potential environmental justice considerations are determined by comparing demographic and 9 economic characteristics (minority population composition and poverty rates) within the ROI to 10 the same characteristics in the surrounding region. Environmental justice analyses are performed 11 to identify potential disproportionate adverse effects from proposed actions and to identify 12 alternatives that might mitigate these effects (USEPA, 2016).

12 13

The term minority refers to people who classified themselves as American Indian or Alaskan
 Native; Asian or Pacific Islander; African Americans or Black, not of Hispanic origin; or Hispanic.

16

Minority populations are defined as areas where racial minorities comprise 50 percent or more of the total population. Because CEQ guidance does not establish a threshold for low-income communities, for the purposes of this EA a low-income population is one with at least 25 percent

- 20 or greater of its population living in poverty for the purposes of this EA.
- 21

22 Demographics

23 Fairfax County comprises an area of 391 square miles, and the estimated 2020 population was 24 1,150,309, according to the 01 April 2020, Population Census, a 6.0 percent increase from the 25 population of 1,081,726 in 2010 (U.S. Census, 2021). In 2021, 35.3 percent of Fairfax County's 26 population was composed of minorities. Fairfax County is not considered a minority community 27 because the percentage of minorities living in the county is less than 50 percent of the total 28 population. The median household income from 2015 to 2019 (in 2019 dollars) was \$124,831. 29 There were approximately 6 percent of persons living in poverty in Fairfax County. Fairfax County 30 is not considered a low-income community because low-income people and families do not 31 comprise 25 percent or more of the total population (U.S. Census, 2022). Some of the census tracts 32 within Fairfax County and north of the Proposed Action Site do qualify as at least 25 percent 33 minority. Census Tracts 4315 and 4316 are 38.9 percent and 70.3 percent minority, respectively 34 (U.S. Census, 2020a). The surrounding census tracts are not considered low-income, because the 35 percent population below poverty does not exceed 25 percent (U.S. Census, 2020b).

36

Fort Belvoir is approximately 8,000 acres in size and has an approximate working population of 40,000 people (NCPC, 2017). FBNA is roughly 804 acres in size and supports approximately 8,600 employees, most of whom are government civilians, military members, and contractors employed by the NGA Campus East, whose headquarters were completed as part of the 2005 BRAC actions in September 2011. NGA Campus East is the third largest federal facility in Washington, D.C. area, at approximately 2.77 million square feet (<u>https://www.nga.mil/history/</u>).

- 43
- 44
- 45

- 1 Housing
- 2 Approximately 7,500 residents live on Fort Belvoir (2,100 housing units, located on Main Post) 3 (NCPC, 2017). A residential area is located north of and adjacent to the Proposed Action Site 4 outside the FBNA boundary.
- 5
- 6 3.12.1.3 Protection of Children
- 7

8 On 21 April 1997, President Clinton issued EO 13045, Protection of Children from Environmental 9 Health Risks and Safety Risks, directing each federal agency to ensure that its policies, programs, 10 activities, and standards address disproportionate environmental health or safety risks to children that may result from the agency's actions. EO 13045 recognizes that a growing body of scientific 11 12 knowledge demonstrates that children may suffer disproportionately from environmental health 13 and safety risks due to still developing neurological, immunological, physiological, and behavioral systems. Examples of risks to children include increased traffic volumes and industrial- or 14 15 production-oriented activities that would generate substances or pollutants that children could 16 come into contact with and ingest.

17

18 Two child development centers are located east of the Proposed Action Site on FBNA (U.S. Army, 19 2021). These facilities were completed in 2015 and provide childcare services primarily for the 20 existing NGA facility. The Army has taken precautions for the safety of children by limiting access 21 to certain areas, the use of fencing, and providing adult supervision (USACE, 2021b).

22

23 3.12.2 Environmental Consequences

24 25

3.12.2.1 Thresholds of Significance

26

31

32

27 Socioeconomics

28 A proposed action is evaluated against the following significance criteria to determine if they 29 would result in a significant impact on the socioeconomic environment: 30

- Substantially change local population growth rates or employment opportunities.
- Create a demand for housing, schools, public facilities, or recreational opportunities that exceeds existing supply.

33 34 **Environmental Justice**

35 The concept of environmental justice is based on the premise that no segment of the population 36 should bear a disproportionate share of adverse human health or environmental effects of a 37 proposed federal action. Historically, low-income and minority communities have been 38 disproportionately affected by negative environmental effects, receiving few of the benefits of 39 economic growth and development while absorbing much of the societal cost.

40

41 A proposed action is evaluated against the following significance criteria to determine if they 42 would result in a significant impact on environmental justice populations: it would cause 43 socioeconomic impacts that disproportionately affect low-income or minority populations.

1 Protection of Children

2 Because children may suffer disproportionately from environmental health risks and safety risks,

3 EO 13045, Protection of Children from Environmental Health Risks and Safety Risks, was issued

- in 1997 to prioritize the identification and assessment of environmental health risks and safety
 risks that may affect children and to ensure federal agencies' policies, programs, activities, and
 standards address environmental and safety risks to children
- 6 standards address environmental and safety risks to children.7
- 8 A proposed action is evaluated against the following significance criteria to determine if they 9 would result in a significant impact on the protection of children: it would increase risks to the 10 safety of children.
- 11

12 3.12.2.2 Impacts of Proposed Action

13

14 <u>Socioeconomics</u>

- 15 Under the Proposed Action, long-term, less-than-significant, beneficial effects would be expected 16 on socioeconomics. The construction and renovation expenditures would result in beneficial
- 17 increases in the Return on Investment (ROI) business sales volume, income, and employment.
- 18 Although the Proposed Action's expenditures would be quite substantial, Fort Belvoir is in an
- 19 economically large and robust region where the magnitude of the expenditures relative to the
- 20 regional demographic and economic forces would be considered minor. Because construction 21 projects are, by nature, temporary, the economic stimulus from construction of the Proposed
- 22 Action would diminish over time as the project reached completion.
- 23
- 24 <u>Environmental Justice</u>
- 25 Under the Proposed Action, no effects would be anticipated on environmental justice. The ROI for
- 26 the Proposed Action is not considered to be a minority or low-income community (USACE,
- 27 2021b). In addition, the Proposed Action would not have the potential to substantially affect human
- health or the environment by excluding persons, denying persons benefits, or subjecting persons
- to discrimination because of their race, color, national origin, or income level.
- 30
- 31 <u>Protection of Children</u>
- 32 Under the Proposed Action, no effects would be anticipated to occur to children. The CDCs are to
- the east of the site and with proper precautions, would not allow children near the construction
- 34 site. Post-construction, there would be no environmental risks for children near or in the Proposed
- 35 Action Site.
- 36
- 37 *3.12.2.3 Impacts of No Action Alternative*
- 38
- 39 Under the No Action Alternative, no changes would be expected to occur to socioeconomics, 40 environmental justice, or protection of children. Fairfax County would see no changes in 41 employment or need for public services. No changes to minority or low-income communities 42 would occur. No changes would occur on-site that have the potential to disproportionately affect 43 children.
- 44

1 2

3.13 CUMULATIVE EFFECTS

This EA has been developed in accordance the 2020 CEQ NEPA regulations (40 CFR 1500) as amended on May 20, 2022, which require assessment of cumulative impacts (U.S. Army, 2022). A cumulative effect is defined as the following (40 CFR § 1508.1(g)(3)): An effect on the environment that results from the incremental effects of the action when added to the effects of other past, present, and reasonably foreseeable actions regardless of what agency (federal or nonfederal) or person undertakes such other actions. Cumulative effects can result from individually minor but collectively significant actions taking place over a period of time.

10

11 3.13.1 Projects Considered for Potential Impacts

The assessment of cumulative effects involves identifying and defining the scope of other actions and their interrelationship with a proposed action or alternatives. The scope must consider other projects that coincide with the location and timeline of a proposed action and other actions.

16 Therefore, this cumulative effects analysis focuses on past, present, and reasonably foreseeable

17 actions taking place within and immediately adjacent to FBNA.

18

19 Past actions are those actions, and their associated impacts, that occurred within the geographical 20 extent of cumulative effects that have shaped the current environmental conditions of the Project

20 extent of cumulative effects that have shaped the current environmental conditions of the Project 21 area and, therefore, are now part of the existing environment, in addition to present actions and

22 included in the affected environments for each resource area. Reasonably foreseeable actions that

23 could have a causal relationship to the Proposed Action and Alternatives and contribute to

24 additional impacts on the human environment are discussed in this section. Because the Proposed

Action would be largely confined to FBNA, aside from commuter and operational traffic, only

those actions occurring on FBNA or immediately adjacent to FBNA are included in this analysis.
Brief descriptions of these actions, as available, follow.

28

Fort Belvoir Defense Intelligence Agency (DIA) Headquarters (HQ) Annex. The Proposed Action involves the construction of the HQ annex building within FBNA, in the vicinity of the NGA complex. The HQ annex would consist of an approximately 77,000 net square foot/116,080 gross square foot administrative building and an associated parking structure. The proposed HQ annex would consolidate administrative facilities for approximately 650 personnel from DIA HQ to address safety, security, and operational concerns specific to the administrative functions of the agency (DIA 2021).

36

37 FBNA Real Property Master Plan (RPMP) And Area Development Plan (ADP) Projects. The Fort

38 Belvoir RPMP and FBNA ADP describe various transportation, infrastructure, and land use

projects to be implemented over time that would accomplish the following goals: Mission and
 Land Use Compatibility, Dense Mid-Rise Buildings, Short/Secured Delivery Routes, Emergency

40 Land Use Compatibility, Dense Mid-Rise Bundings, Shot/Secured Denvery Routes, Emergency 41 Response Quickness Maintained, Improved Power Redundancy, Mission Appropriate Parking

42 Ratio, Architecture Adaptable to Emerging Technology (Utilidors, Conduit), Increased Transit and

- 42 Ratio, Architecture Adaptable to Emerging Technology (Oundors, Condurt), increased Transit and 43 Rideshare, Continued Compliance with Existing Permits and Policies, and Mitigated Potential
- 44 Encroachment (U.S. Army 2021; Fort Belvoir 2014b).

1

Fairfax County and Franconia-Springfield Parkways Alternatives Analysis and Long-Term
Planning Study. The Planning Study includes a proposal to widen the Fairfax County Parkway
from 4 to 6 general purpose lanes between the Barta Road interchange and John J. Kingman Road.
This widening effort would also include construction of continuous, connected, multi-use trails on
both sides of the Parkway. In addition, Fairfax County has proposed interchange modifications at
Fairfax County Parkway and I-95 (FCDOT 2016).

8

9 3.13.2 Cumulative Effects on Resource Areas

10

11 The Proposed Action, when combined with present and reasonably foreseeable future projects, 12 would not result in cumulatively significant effects on any resource area. Four resource areas that 13 would likely incur cumulative impacts are discussed below; the other resource areas identified 14 earlier in Section 3 would not incur greater than negligible cumulative impacts.

15

16 Water Resources. The master plan for Fort Belvoir envisions FBNA as a future center for an 17 intelligence community integrated campus, with mid- and long-term additions of more buildings 18 and associated infrastructure, including roads, parking and stormwater management facilities. This 19 additional build-out, including the Proposed Action and DIA HQ annex, would add more 20 impervious surfaces to FBNA. Construction of an extension of Heller Road, to form a loop (with 21 Barta Road) around the eastern portion of FBNA could potentially impact Accotink Creek and 22 associated wetlands. Project proponents would be expected to obtain coverage under applicable 23 permits issued by USACE and VADEQ in accordance with the CWA and would adhere to 24 avoidance, minimization and compensatory mitigation to ensure that impacts to regulated waters 25 would remain minor, and the resulting cumulative impacts would not be significant.

26

Noise. If the Proposed Action were to occur at the same time as other construction efforts under
 the reasonably foreseeable actions, cumulative short-term, minor impacts on the noise environment
 would be expected as a result of combined construction equipment and construction-related noise.
 In combination with other reasonably foreseeable actions, such as the DIA HQ annex, long-term,

31 minor but intermittent noise would be anticipated from commuter traffic and vehicle and generator

- 32 use as part of daily operations. No project has been identified that, when combined with the
- 33 Proposed Action, would result in significant impacts.
- 34

35 Air Quality. If the Proposed Action were to occur at the same time as other construction efforts 36 under the reasonably foreseeable actions, cumulative short-term, minor impacts on air quality 37 would be expected from construction vehicle emissions. Implementation of BMPs and 38 environmental control measures, such as wetting the ground surface and regular maintenance of 39 work vehicles, would be incorporated at construction areas and during operations to minimize 40 potential impacts. Cumulative, long-term, negligible to minor, adverse impacts on air quality 41 would be expected as a result of daily operation of the distribution warehouse and DIA HO annex, 42 and Fairfax County traffic due to vehicle, equipment, and generator use. Estimated air emissions 43 generated by the Proposed Action would be *de minimis* and activities of this limited size and nature

44 would not result in significant impacts on air quality.

- 1
- Traffic. Long-term, negligible to minor, adverse impacts on traffic would be expected as a result of daily commutes and operations on FBNA under the Proposed Action. When combined with the DIA HQ annex, and potential operational expansions under the ADP and RPMP, cumulative longterm, minor, adverse impacts on traffic would be expected. Increased traffic on FBNA would be alleviated by traffic flow improvements due to Fairfax County Parkway widening and improvements. Cumulative impacts would not be significant.

Draft EA FBNA Distribution Center Fort Belvoir, Virginia

4 CONCLUSIONS

1 2

This draft EA has been prepared to analyze the potential environmental, cultural, and socioeconomic effects associated with the proposed construction and operation of a distribution center on FBNA. The purpose of this project is to build and operate a 525,000-square foot distribution center warehouse and administrative building with associated parking and covered storage for approximately 600 personnel. The need for this Proposed Action is to modernize logistical operations and will address safety, security, and operational concerns specific to the distribution center and its administrative functions.

10

The analysis within this draft EA concluded that there would be no significant adverse impacts on land use, geology, topography, groundwater, floodplains, utilities, airspace, cultural and historic resources, socioeconomics, environmental justice and protection of children; short-term minor adverse impacts on soil, surface water, RPAs, coastal zones, wetlands, stormwater, vegetation, wildlife resources, noise, air quality and traffic; long-term minor beneficial impacts on vegetation, hazardous materials and waste, munitions, and socioeconomics; as well as short-term minor beneficial impacts on socioeconomics.

18

Table 4-1 summarizes the potential consequences the Proposed Action and No Action Alternativewould have on the environmental resources.

21

Based on the evaluation of the environmental consequences in this draft EA, the Proposed Action
 would have no significant impacts on the environment, and the preparation of an EIS is not
 warranted. The preparation of an FNSI is appropriate.

25 26

27

Resources					
Resource	Proposed Action	No Action Alternative	Permits and Best Management and Mitigation Measures		
Geology, topography, and soils	Short-term, less-than- significant adverse impacts on soils. Clearing, grubbing and grading would temporarily increase erosion and the potential for sediments to be transported off-site; however, the finished building would be beneficial in reducing accelerated rates of runoff from adversely affecting downstream receiving waters as a result of properly designed stormwater management	No effects	-Obtain ground disturbance permits from Fort Belvoir DPW -Follow ESC Plan (to be included in the project civil design plan following review by Fort Belvoir DPW and approval by VDEQ) -Follow SWPPP -Obtain Construction General Permit from VDEQ		

Table 4-1: Summary of Potential Environmental Consequences on Environmental

Resource	Proposed Action	No Action Alternative	Permits and Best Management and Mitigation Measures
Water resources (Surface water, RPAs, wetlands, floodplains, groundwater, stormwater, Coastal Zone)	Less-than-significant adverse impacts on surface water, RPAs, wetlands, coastal zone and stormwater. No effects on groundwater and floodplains. This stage of construction exposes soils and increases the potential for erosion and discharge of sediment- laden stormwater to downstream receiving waters; however, appropriate erosion and sediment control measures would be implemented, pursuant to the construction SWPPP and the VSMP Construction General Permit, and would minimize any detrimental effects. Construction of permanent stormwater management features will handle stormwater generated from the development and be designed to maintain pre- development levels of	Alternative Less-than- significant adverse impacts on surface water. No effects on RPAs, wetlands, groundwater, floodplains, coastal zone.	Mitigation Measures -Obtain CGP -Follow ESC and SWPPP, as referenced above -Design and construction would be performed in accordance with Virginia CZMA policies. -Obtain permit for impacts to wetlands/streams pursuant to Section 401/404 of the CWA prior to disturbance to these resources - All temporarily disturbed areas would be graded and revegetated upon completion of construction -Employ erosion and sediment control measures during construction, to include silt fencing and sediment traps. -Provide spill kits on site in the event of an accidental release of petroleum products from construction equipment. -Provide appropriate secondary containment for on-site generators.
Biological resources (Vegetation, wildlife, RTE species, PIF)	off-site discharge. Less-than-significant, short-term, adverse effects on vegetation, wildlife, and RTE species. The Proposed Action would remove existing vegetation, disturbing habitat areas and causing fauna that use the area to relocate. The vegetation/tree removal would be offset with replantings, and the construction area stabilized and revegetated with native plants.	No effects	 -Replanting to offset removal of existing trees within the site would be performed in accordance with Fort Belvoir's Tree Removal and Protection Policy. -Consultation regarding listed species would be conducted pursuant to Section 7 of the ESA. -Survey for the small whorled pogonia was conducted on 21 June 2022 and a bat survey for the NLEB was conducted in May 2022. Both species were absent from the Proposed Action Site. - Perimeter controls would be installed during the winter months to exclude the endangered wood turtle from proposed areas of construction activity, as necessary. - To minimize impacts to birds,

Resource	Proposed Action	No Action Alternative	Permits and Best Management and Mitigation Measures
			 construction activities would avoid cutting and removal of vegetation from April 1 to July 15. To protect nesting bat species, no trees over 3 inches in diameter would be removed within the project area between April 15 and September 15.
Hazardous Waste Materials and Munitions	Less-than-significant beneficial effects on hazardous waste and munitions. A munitions survey would ensure the Proposed Action area is cleared from munitions., alleviating safety concerns related to possible munitions remaining on the surface or buried near the surface.	No effects	 -Munitions clearance would be conducted pursuant to the 2021 Fort Belvoir Best Management Practice memorandum. -Land use controls, likely to result in the requirement for a vapor intrusion barrier for the administrative building, would continue to be in effect for this site. -Ongoing remedial actions would continue through the re-establishment of an effective groundwater monitoring well system and capping of wells where necessary. -Soils excavated or otherwise disturbed during the project's construction phase would be tested in accordance with established Fort Belvoir policies and procedures. -The construction contractor would be required to prepare and adhere to a SPCC plan.
Utilities (Electric, Wastewater, and Natural Gas)	Less-than-significant, long- term adverse effects on electric, wastewater, and natural gas. The operation of the building would increase demand, but the existing utility systems have been constructed in consideration of long- term buildout of FBNA.	No effects	Any required ground disturbance associated with the extension of existing utilities for connection to the Proposed Action would adhere to the required sediment and erosion control permits.
Noise	Less-than-significant, long- term adverse effect and Less-than-significant, short-term adverse effects during the construction period would occur as a result of the various types of heavy equipment needed. BMPs (listed in	No effects	 -The Fairfax County noise ordinance limits construction noise above 60 dBA for residential areas during weekdays. -Noise levels must not exceed National Institute for Occupational Safety and Health or Occupational Safety and Health Administration guidance for workers. -To minimize the potential adverse impact from these noises, construction

Resource	Proposed Action	No Action Alternative	Permits and Best Management and Mitigation Measures
Airspace	 this section) would be employed to minimize the adverse effects from construction noise. Operation of the completed facility would be expected to result in a negligible increase in ambient noise from climate control (heating/cooling) infrastructure supporting the building and additional commuting vehicles. 	No effects	 vehicles would be equipped with noise dampening equipment including mufflers which would be operated according to the manufacturers' instructions. Construction vehicles and equipment would be turned off when not in use for more than five minutes. Construction would take place during daylight hours on weekdays, unless there is a specific action that would require working outside of this normal timeframe, such as mobilizing oversized materials or equipment to the site. No permits/BMPs required.
Air Quality	adverse effects Less-than-significant, short- and long-term adverse effects. During	No effects	-Comply with VDEQ's Fort Belvoir - North Area synthetic mNSR air permit -BMPs include: covering truck beds
	construction engine emissions and potential fugitive dust emissions would have adverse effects; however, these impacts would be minimized through BMPs. Long-term operation of the facility would result in de minimis emissions.		while in transit to reduce fugitive emissions; spraying water on any unpaved roads or stockpiles to limit fugitive emissions; using ultra-low sulfur diesel as a fuel source where appropriate to minimize oxides of sulfur emissions; using clean diesel in construction equipment and vehicles though the implementation of add-on control technologies and using electric-powered equipment in lieu of diesel-powered equipment when feasible; and, implementing control measures for heavy construction equipment and vehicles (e.g. minimizing operating and idling time). -LEED-Silver design to reduce energy and water usage over the life of the building.
Traffic	Less-than-significant, short-term adverse effects on the regional roadway network and project vicinity from construction worker commutes and delivery/pickup of construction materials/debris. Less-than- significant, long-term	No effects	-Possible roadway and intersection improvements to mitigate operational impacts.

Resource	Proposed Action	No Action Alternative	Permits and Best Management and Mitigation Measures
	effects of increased personnel commuting to/from FBNA.		
Cultural and Historic Resources	No effects. No sites eligible for listing on the NRHP are located within the study area.	No effects	-Consultation in accordance with Section 106 of the NHPA required. -Inadvertent discovery of cultural resources would be managed according to procedures documented in Fort Belvoir's ICRMP.
Socioeconomics, Environmental Justice, and Protection of Children	Less-than-significant, short- and long-term beneficial effects on socioeconomics due to the potential employment of local construction workers and purchasing of materials from local vendors.	No effects	-The Proposed Action would be initiated only after this environmental review has been completed and the appropriate permits are acquired. It is anticipated that the permitting process would result in assurance of safety and protection of the public, including children. -Proper precautions including the placement of fencing, signage, and other types of barriers would be used to prevent potential harm to all civilians, including children.

1

5 ACRONYMS

	Area Davalonment Dian
ADP AIRFA	Area Development Plan American Indian Religious Freedom Act
AOPC	Area of Potential Concern
APE	Area of Potential Effect
ARPA	Area of Potential Effect Archaeological Resource Protection Act
BMP	best management practices
BMF BO	Biological Opinion
BRAC	Biological Opinion Base Realignment and Closure
CAA	Clean Air Act
CBPO	Chesapeake Bay Preservation Ordinance
CDC	Child Development Center
CERCLA	Comprehensive Environmental Response, Compensation, and Liability
CEQ	Council on Environmental Quality
CFR	Code of Federal Regulations
CO	carbon monoxide
CO_2	carbon dioxide
CO_2e	equivalent emissions of CO ₂
COC	Constituent of Concern
CWA	Clean Water Act
CZMA	Coastal Zone Management Act
DA	Department of Army
dB	decibel
dBA	A-weighted decibel
dBC	C-weighted decibel
DAAF	Davidson Army Air Field
DDD	dichlorodiphenyldichloroethane
DERP	Defense Environmental Restoration Program
DMM	discarded military munitions
DNL	day-night average sound level
DNT	dinitrotoluene
DoD	Department of Defense
DoDI	Department of Defense Instruction
DOPAA	Description of Proposed Action and Alternatives
DPW	Directorate of Public Works
EA	Environmental Assessment
EIS	Environmental Impact Statement
EISA	Energy Independence and Security Act
EO	Executive Order
EPG	Engineering Proving Ground
ESA	Endangered Species Act
FAA	Federal Aviation Administration
FAR	Federal Aviation Regulation

FBNA	Fort Belvoir North Area
FNSI	Finding of No Significant Impact
FUDS	Formerly Used Defense Sites
GHG	greenhouse gases
НАР	hazardous air pollutant
HFC	hydrofluorocarbon
HHRA	Human Health Risk Assessment
HTMW	Hazardous and Toxic Materials and Waste
I-95	Interstate-95
ICRMP	Integrated Cultural Resources Management Plan
INRMP	Integrated and Natural Resources Management Plan
IPaC	Information for Planning and Conservation
IRP	Installation Restoration Program
kV	kilovolt
LEED	Leadership in Energy and Environmental Design
LEQ	equivalent-average sound level
LID	low impact development
LOD	limits of disturbance
LUC	land use control
LUCIP	Land Use Control Implementation Plan
LUPZ	Land Use Planning Zone
MBTA	Migratory Bird Treaty Act
MC	munitions constituents
MEC	Munitions and Explosives of Concern
ML	measurement location
mNSR	Minor New Source Review
MMRP	Military Munitions Response Program
MS4	Municipal Separate Storm Sewer System
NAAQS	National Ambient Air Quality Standards
NAGPRA	Native American Graves Protection and Repatriation Act
NEPA	National Environmental Policy Act
NCPC	National Capital Planning Commission
NCR	National Capital Region
NFA	No Further Action
NHPA	National Historic Preservation Act
NGA	National Geospatial Intelligence Agency
NHPA	National Historic Preservation Act
NLEB	Northern Long-eared Bat
NO _x	Nitrogen Dioxides
NOI	Notice of Intent
NPDES	National Pollutant Discharge Elimination System
NRCS	Natural Resources Conservation Service
NRHP	National Register of Historic Places
NSR	noise-sensitive receptors
O 3	ozone

PFC	perfluorocarbon
PIF	Partners in Flight
PM_{10}	particulate matter measured less than or equal to 10 microns in diameter
PM _{2.5}	particulate matter measured less than or equal to 2.5 microns in diameter
RCRA	Resource and Recovery Act
RDX	1,3,5-triazine
ROI	Region of Influence
RONA	Record of Non-Applicability
RPA	Resource Protection Area
RTE	rare, threatened, and endangered
SHPO	State Historic Preservation Office
SOx	sulfur oxides
SOC	Species of Concern
SPCC	Spill Prevention, Control, and Countermeasures
SWMU	Solid Waste Management Unit
SWPP	Stormwater Pollution Prevention Plan
TCE	Trichloroethylene
TIS	Traffic Impact Study
TMC	Turning Movement Counts
TMDL	Total Maximum Daily Load
tpy	tons per year
UAG	U.S. Army Garrison
USC	United States Code
USACE	U.S. Corps of Engineers
USDA	U.S. Department of Agriculture
USEPA	U.S. Environmental Protection Agency
USFWS	U.S. Fish and Wildlife Service
UXO	unexploded ordnance
VADEQ	Virginia Department of Environmental Quality
VDHR	Virginia Department of Historic Resources
VDWR	Virginia Department of Wildlife Resources
VOC	volatile organic compound

6 LIST OF PREPARERS

US Army Corps of Engineers, Baltimore District				
Name	Project Responsibility	Organization		
Marisa Wetmore	Section Chief	Planning Division		
Heather Cisar	NEPA Program Manager	Planning Division		
Connie Ramsey	Project Manager	Planning Division		
Lauren Joyal	Biologist	Planning Division		
	HDR-Tehama JV			
Charles Arthur	Project Manager	HDR-Tehama JV		
Patrick Solomon	NEPA Advisor	HDR-Tehama JV		
Abbey Humphreys	NEPA/Airspace Specialist	HDR-Tehama JV		
Hilary Rummel	NEPA/Cultural Resources	HDR-Tehama JV		
	Specialist			
Matt Anding	Project Geologist	HDR-Tehama JV		
Gina Jarta	Noise Specialist	HDR-Tehama JV		
Adam Buck	Noise Specialist	HDR-Tehama JV		
Deborah Peer	Airspace/Air Quality			
	Specialist			
Carolyn Hein	Air Quality Specialist	HDR-Tehama JV		
Mike Brown	Traffic Specialist	HDR-Tehama JV		
Orly Ludwig	Socioeconomics and	HDR-Tehama JV		
	Environmental Justice			
	Specialist			

7 REFERENCES

- AECOM. 2021. Draft Final Focused Area Feasibility Study for CC-MPS-2009, prepared for U.S. Army Corps of Engineers, Baltimore District and U.S. Army Garrison Fort Belvoir, March 2021.
- Arcadis. 2019. Final Focused Feasibility Study for Munitions Disposal at Range 5 (Area of Potential Concern) prepared for U.S. Army Corps of Engineers, Baltimore District and U.S. Army Garrison Fort Belvoir, February 2022.
- Arcadis. 2021. Semi-Annual Groundwater Monitoring Report SWMUs M-32 (FTBL-005-R-08) and M-33 (FTBL-005-R-05) HQAES Nos. 51105.1080 (M-32) and 51105.1077 (M-33) Fort Belvoir, Virginia prepared for USACE, July 2021.
- Conti. 2018. Conti Environment and Infrastructure, Inc. and Zapata Incorporated. *Site Specific Final Report Investigation and Removal Action, Range Clearance and Site Investigation, Engineering Proving Ground (EPG), US Army Garrison, Fort Belvoir, Virginia.* Prepared for US Army Corps of Engineers, Baltimore District, 2018.
- Defense Intelligence Agency (DIA). 2021. Headquarters Annex Environmental Assessment, For Belvoir, Virginia. October, 2021.
- Department of Defense. 2001. Memorandum: DOD Policy on Land Use Controls Associated with Environmental Restoration Activities. Department of Defense. January, 2001.

Department of Defense. 2016. Strategic Sustainability Performance Plan. September 6, 2016.

- FAA. 2022. Advisory Circular 150/5300-13B, *Airport Design*, 31 March 2022. Available from https://www.faa.gov/documentLibrary/media/Advisory_Circular/150-5300-13B-Airport-Design.pdf, accessed April 2022.
- Fairfax County Department of Transportation (FCDOT). 2016. Draft Fairfax County and Franconia-Springfield Parkways Alternatives Analysis and Long-Term Planning Study. Public Information Meeting. November 2016.
- Fort Belvoir. 2014a. Integrated Cultural Resources Management Plan, 2014. U.S. Army Garrison, Fort Belvoir, Virginia. 2014.
- Fort Belvoir. 2014b. Real Property Master Plan. Fort Belvoir, Virginia.
- Fort Belvoir. 2017. Integrated Natural Resources Management Plan, 2018-2022. U.S. Army Garrison, Fort Belvoir, Virginia. July 2017.

- Fort Belvoir. 2018. Policy Letter #27, *Tree Removal and Protection*, U.S. Army Garrison, Fort Belvoir, August 2018.
- HDR. 2020. HQ DIA Annex, Planning Charrette Report, Joint Base Anacostia-Bolling and Fort Belvoir, Virginia, 2020.
- Intergovernmental Panel on Climate Change. 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. *Summary for Policymakers*. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2014.
- MAAR Associates. 1993. Phase I Investigations of Various Development Sites and Training Areas. 1993.
- National Oceanic and Atmospheric Administration. 2022. Obstruction Identification Surfaces, Federal Aviation Regulation Part 77. Accessed 1 April 2022. https://www.ngs.noaa.gov/AERO/oisspec.html.
- Natural Resources Conservation Service. 2022. Natural Resources Conservation Service (NRCS). 2022 Web Soil Survey. U.S. Department of Agriculture. Accessed 17 February 2022. http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx.
- Naval Facilities Engineering Command. 2011. Vapor Intrusion Mitigation in Construction of New Buildings Fact Sheet. Naval Facilities Engineering Command. Accessed from <u>https://denix.osd.mil/irp/navyvaporresources/</u>. August 2011.
- National Capital Planning Commission. 2017. National Capital Planning Commission, Executive Director's Recommendation on the Fort Belvoir Real Property Master Plan, Fort Belvoir, Virginia, January 2017.
- Tetra Tech, Inc. 2007. Investigation Summary Report, Solid Waste Management Unit M-34 at Engineering Proving Ground prepared for U.S. Army Garrison Fort Belvoir, April 2007.
- New South Associates. 2007. Architectural Survey of the Engineer Proving Ground. VDHR File No. 2007-0250. 2007
- U.S. Army. 2007. Final Environmental Impact Statement for Implementation of the 2005 Base Realignment and Closure Recommendations and Related Army Actions at Fort Belvoir, Virginia. Prepared by the U.S. Army Corps of Engineers, Mobile District and Tetra Tech, Inc. June 2007.
- U.S. Army. 2015. Final Environmental Impact Statement for Short-Term Projects and Real Property Master Plan Update. United States Army Garrison Fort Belvoir. June 2015.

- U.S. Army. 2021. Real Property Master Plan Installation Draft Fort Belvoir North Area Development Plan, Fort Belvoir, Virginia. Prepared by the US Army Garrison Fort Belvoir, June 2021.
- U.S. Army. 2022. Memorandum for Implementation of Council on Environmental Quality Revisions to National Environmental Policy Act Regulations, Department of the Army, U.S. Army, May 19, 2022.
- U.S. Army Garrison Fort Belvoir. 2015. Real Property Master Plan Installation Vision and Development Plan, Fort Belvoir, Virginia. Prepared by the US Army Garrison Fort Belvoir, Directorate of Public Works (DPW), Facilities Planning Division.
- U.S. Army Garrison Fort Belvoir. 2022. Memorandum for All Proposed Land Modification Activities on U.S. Army Garrison, Fort Belvoir, U.S. Army Garrison, Fort Belvoir, February 24, 2022.
- U.S. Army Corps of Engineers. 2014. Department of the Army, USACE. Safety and Health Requirements. Manual: EM 385-1-1. November 30, 2014.
- U.S. Army Corps of Engineers. 2021a. Remedial Investigation Report and Focused Feasibility Study Fort Belvoir North Area Munitions Response Area (FTBL-005-R-01; HQAES No. 51105.1051). Fort Belvoir, Virginia, Prepared for U.S. Army Corps of Engineers, Baltimore District by Arcadis U.S., Inc. January, 2021.
- U.S. Army Corps of Engineers. 2021b. Environmental Assessment and Finding of No Significant Impact, Defense Intelligence Agency Headquarters Annex, Fort Belvoir North Area, Fairfax County, Virginia. Prepared by the U.S. Army Corps of Engineers. October 2021.
- U.S. Census. 2020a. U.S. Census 2020 Census Demographic Data Map Viewer for Virginia, <u>https://arcg.is/0eWzy8</u>, accessed April 2022.
- U.S. Census. 2020b. U.S. Census Bureau, American Community Survey: Percent below poverty level for Virginia in 2020, accessed April 2022.
- U.S. Census. 2022. U.S. Census Bureau Quick Facts for Fairfax County, Virginia, <u>https://www.census.gov/quickfacts/fairfaxcountyvirginia</u>, accessed February 2022.
- U.S. Energy Information Administration. 2018. Virginia, State Profile and Energy Estimates. Available from https://www.eia.gov/state/rankings/?sid=VA#/series/226, accessed April 2022.
- U.S. Environmental Protection Agency. 2009. Endangerment and Cause or Contribute Findings for Greenhouse Gases Under Section 202(a) of the Clean Air Act. Final findings were published in the Federal Register under Docket ID No. EPA-HQ_OAR-2009-0171, December 15, 2009.

- U.S. Environmental Protection Agency. 2016. Promising Practices for Environmental Justice Methodologies in NEPA Reviews, February, 2016.
- U.S. Environmental Protection Agency. 2017. EPA 3013 Administrative Order Closure Summary for Fort Belvoir, North Area, July 2017.
- U.S. Environmental Protection Agency. 2022a. Nonattainment Status for Ambient Air Quality Standards, Fairfax County, Virginia. Available from https://www3.epa.gov/airquality/greenbook/anayo_va.html.
- U.S. Environmental Protection Agency. 2022b. Overview of Greenhouse Gas Emissions. Available from <u>https://www.epa.gov/ghgemissions/overview-greenhouse-gases.</u>
- U.S. Environmental Protection Agency. 2022c. Greenhouse Gas Equivalencies Calculator. March 2002. Available from <u>https://www.epa.gov/energy/greenhouse-gas-equivalencies</u>-calculator, accessed April 2022.
- U.S. Fish and Wildlife Service. 2022. Information for Planning and Conservation (IPaC) Trust Resource Report, <u>https://ecos.fws.gov/ipac/</u>, accessed February 2022.
- Virginia Department of Environmental Quality. 2017. Volume II, Sediment TMDLs for the Accotink Creek Watershed, Fairfax County, Virginia. Prepared by the Interstate Commission on the Potomac River Basin on behalf of the Virginia Department of Environmental Quality. August 2017.

APPENDIX A – AGENCY COORDINATION

Request for Early Input

Environmental Assessment Proposed Action and Alternatives for the Distribution Center at Fort Belvoir, Virginia

All Interested Parties: The U.S. Army Garrison, Fort Belvoir, Virginia is preparing an Environmental Assessment (EA) for the construction and operation of a distribution center at the Fort Belvoir North Area (FBNA) in Springfield, Virginia, pursuant to the National Environmental Policy Act (NEPA) of 1969 (42 United States Code Section 4321 *et seq.*), the Council on Environmental Quality (CEQ) regulations that implement NEPA (40 Code of Federal Regulations [CFR] 1500-1508), and 32 CFR Part 651, *Environmental Analysis of Army Actions.* An EA is used as a planning document to assess environmental impacts, evaluate their significance, develop alternatives and mitigation measures, and allow for agency and public participation (32 CFR 651.20).

The EA is being prepared to evaluate the environmental impacts associated with the **Proposed Action** to build and operate a distribution center at FBNA. The project will modernize logistical operations and address safety, security, and operational concerns specific to the warehouse and its administrative functions. The project is needed to support the delivery and receipt of materials within and across the Washington Metropolitan Area, requiring a site within the National Capital Region to achieve distribution efficiencies.

The **Proposed Action** involves the construction and operation of an approximately 525,000 square foot warehouse and administrative building with associated parking and covered storage at FBNA for approximately 600 personnel. The hours of operation will typically be between 6am and 4pm. The proposed site location is in a forested area surrounded by industrial land use, keeping the same type of activity that already exists within the FBNA fence line.

The EA will also consider a **No Action Alternative**, which would involve no construction and no distribution center. Although the **No Action Alternative** would not meet the purpose and need for the action, CEQ requires the analysis of the **No Action Alternative**, as it also provides a benchmark for enabling decision-makers to compare the magnitude of environmental effects of the **Proposed Action**.

In accordance with 40 CFR 1500-1508, the Army invites you to provide early input on the **Proposed Action** to be considered in our analysis of each alternative in the forthcoming EA. This notice is being distributed to organizations that may have an interest in the project. Information on the **Proposed Action** can be found on the project website at <u>https://www.nab.usace.army.mil/FBNA/</u>. Comments on the **Proposed Action** can be submitted through the project website or via email to FBNA@usace.army.mil.

Additionally, once the draft EA is completed, agencies and the public will have an opportunity to review and provide comments during a 30-day public review period, which will be announced in a notice published in local newspapers, the project website shown above, and the Fort Belvoir website at https://home.army.mil/belvoir/index.php/about/Garrison/directorate-public-works/environmentaldivision. Printed copies of the draft EA will be available in the local libraries: Fort Belvoir Library, Lorton Library, Kingstowne Library, Sherwood Regional Library, and Richard Byrd Library.

We appreciate your attention to this matter. Early input will be accepted for a period of 15 days,

beginning on the date of this notice. Should you require any additional information or have any questions, please contact the Fort Belvoir Directorate of Public Works-Environmental Division (DPW-ED) via phone at (703) 806-3193 or (703) 806-0020, during normal working business hours, Monday through Friday, 8:00 a.m. to 4:00 p.m.

December 22, 2021

Marc Holma State Historic Preservation Officer Office of Review and Compliance Virginia Department of Historic Resources 2801 Kensington Avenue Richmond, VA 23221

Re: Proposed Distribution Center on Fort Belvoir North Area (FBNA), Fort Belvoir, Virginia

Dear Mr. Holma:

U.S. Army Garrison Fort Belvoir would like to initiate formal Section 106 consultation with your office in accordance with Section 36 CFR § 800.3 of the Advisory Council on Historic Preservation's regulations implementing Section 106.

A project proponent is proposing the construction of a distribution center on FBNA, Fort Belvoir, Fairfax County, Virginia. The purpose of the project is to construct an approximately 525,000 square foot distribution center consolidated complex consisting of a high bay warehouse, a twostory administrative building, a truck maintenance/ refueling building, covered/enclosed storage buildings and an entry control facility (gate house and vehicle inspection). This facility will support the delivery and receipt of materials within and across the Washington Metropolitan Area, requiring close proximity within the National Capital Region to achieve distribution efficiencies. The action would also provide for compliance with Office of Management and Budget (OMB) guidance to identify "good stewardship of taxpayer resources" and increase joint site usage. The distribution center expects minimal truck traffic compared to a typical industrial distribution center.

The Area of Potential Effect (APE) for an undertaking generally includes the boundaries for ground disturbance for the project and the view shed. At this early stage in the analysis, the geographic boundaries of the APE for this undertaking are conservatively estimated to be the project boundary depicted in Figure 1-2, an approximately 160-acre site on the western portion of FBNA. The Army anticipates the APE would include areas where the construction and operation of the building may directly or indirectly cause changes in the character or use of historic properties.

Much of the area within the undertaking's limits of disturbance has been disturbed by previous construction. A comprehensive archaeological survey was completed for the FBNA (formerly known as the Engineering Proving Grounds) area in 1993, and no archaeological properties were present. Only one archaeological resource, an isolated prehistoric artifact, has been discovered on FBNA but evaluated as not eligible for the NRHP. A comprehensive architectural survey of all extant properties on FBNA was completed in 2006 and none were eligible for the National Register, nor listed on any state or local resister. Historic architectural resource surveys conducted

Draft Section 106 Initiation Letter FBNA Distribution Center

in support of the Fort Belvoir 2016 ICRMP have determined there were no architectural resources eligible for listing in the National Register on FBNA.

No known cultural or historic sites would be impacted by this undertaking. Should archaeological artifacts or features be encountered during construction, all construction activities in the immediate vicinity of the discovery would stop and VDHR would be contacted immediately to determine appropriate treatment.

Pursuant to Section 106 of the National Historic Preservation Act, 36 Code of Federal Regulations § 800, we request your participation and comments on the proposed undertaking.

Please provide written comments within 30 days from the date of this letter to Fort Belvoir contact information. If you need further information, please contact Catherine Roberts, Cultural Resource Program Manager, at 703-806-XXXX.

Belvoir Env office chief signature block

Enclosures: Figure 1-1: Location Map of Fort Belvoir Figure 1-2: Project Area for Proposed Action on FBNA

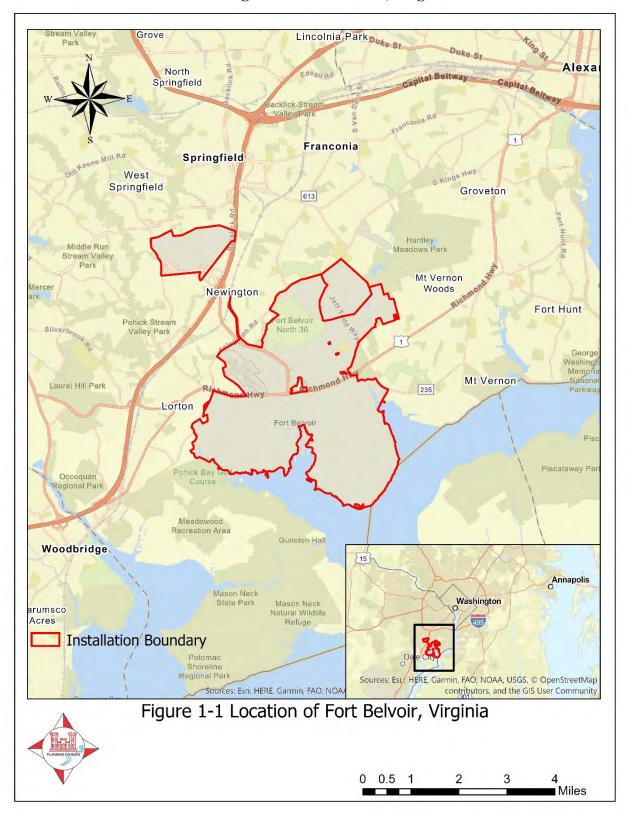
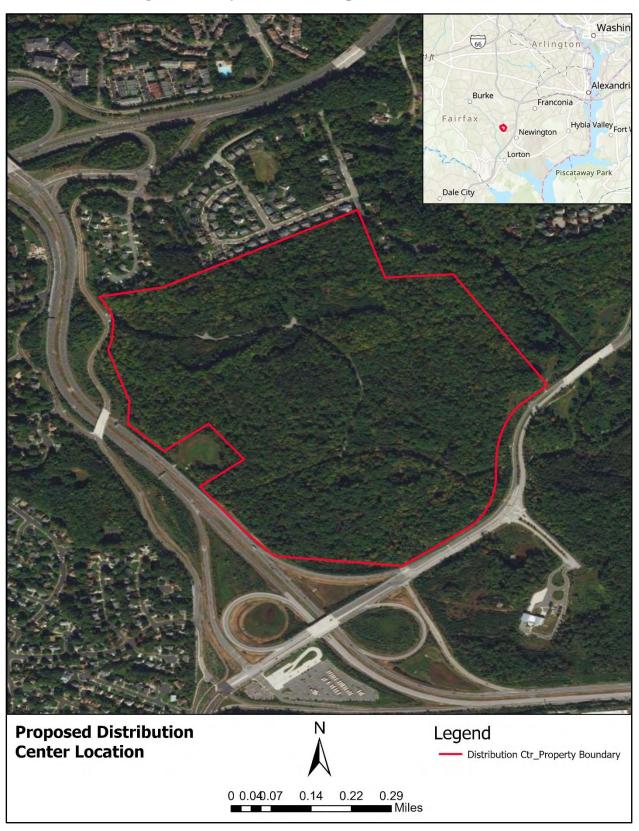



Figure 1-1 Fort Belvoir, Virginia

Figure 1-2 Project Area for Proposed Action on FBNA

COMMONWEALTH of VIRGINIA

Department of Historic Resources

Travis A. Voyles Acting Secretary of Natural and Historic Resources 2801 Kensington Avenue, Richmond, Virginia 23221 MEMORANDUM Julie V. Langan Director Tel: (804) 482-6446 Fax: (804) 367-2391 www.dhr.virginia.gov

DATE: 21 June 2022

DHR File # 2022-4056

TO: Ms Catherine Roberts ARMY

FROM: What are E. Holma, Architectural Historian (804) 482-6090 Review and Compliance Division

- **PROJECT:** Fort Belvoir North Area Distribution Center Draft Environmental Assessment Fort Belvoir, Fairfax County
- This project will have an effect on historic resources. Based on the information provided, the effect will not be adverse.
- This project will have an adverse effect on historic properties. Further consultation with DHR is needed under Section 106 of the NHPA.
- _____ Additional information is needed before we will be able to determine the effect of the project on historic resources. **Please see below.**
- X No further identification efforts are warranted. No historic properties will be affected by the project. Should unidentified historic properties be discovered during implementation of the project, please notify DHR.
- We have previously reviewed this project. Attached is a copy of our correspondence.
- Other (Please see comments below)

COMMENTS:

Western Region Office 962 Kime Lane Salem, VA 24153 Tel: (540) 387-5443 Fax: (540) 387-5446 Northern Region Office 5357 Main Street PO Box 519 Stephens City, VA 22655 Tel: (540) 868-7029 Fax: (540) 868-7033 Eastern Region Office 2801 Kensington Avenue Richmond, VA 23221 Tel: (804) 367-2323 Fax: (804) 367-2391

DEPARTMENT OF THE ARMY US ARMY INSTALLATION MANAGEMENT COMMAND HEADQUARTERS, UNITED STATES ARMY GARRISON, FORT BELVOIR 9820 FLAGLER ROAD, SUITE 213 FORT BELVOIR, VIRGINIA 22060-5928

Directorate of Public Works

Principal Chief Richard Sneed Eastern Band of Cherokee Indians P.O. Box 1927 Cherokee, NC 28719

Dear Chief Sneed:

The Army recognizes its responsibilities to maintain Government-to-Government relationship with all tribes affected by activities on Army Installations and our federal trust responsibility for those lands. In the interest of early and frequent communication under Section 106 of the National Historic Preservation Act of 1966 (NHPA), as amended, pursuant to 36 Code of Federal Regulations (CFR) Part 800.3(f)(2) and as part of the Department of Defense's policy for Government-to-Government consultation with Native American tribes, I am writing to inform you that the Army is beginning the scoping process to prepare an Environmental Assessment (EA) for the proposed construction and operation of an approximately 525,000 square foot warehouse and administrative building with associated parking and covered storage on Fort Belvoir's North Area (FBNA), Fort Belvoir, Virginia.

The Army will be preparing the EA under the National Environmental Policy Act of 1969 (NEPA) (42 United States Code Section 4321 *et seq.*), the Council on Environmental Quality regulations implementing NEPA (40 CFR Parts 1500–1508), and the Army's regulations implementing NEPA (32 CFR Part 651). This project is in the early stages of planning. As soon as more detailed project information has been developed, formal tribal consultation will be initiated. Current information about the Proposed Action can be found on our website at the following: https://www.nab.usace.army.mil/ERCA/.

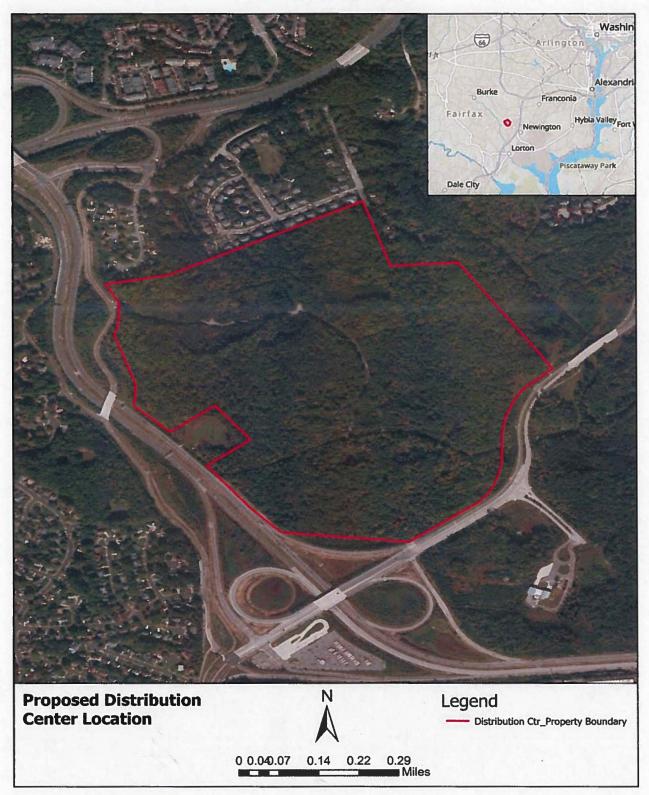
The purpose of this EA is to inform decision-makers, tribes, stakeholders, and the public of the potential environmental consequences and any associated mitigations, as applicable. Affected Native American tribes and interested persons, organizations, and agencies will have multiple opportunities to provide input on the proposed project. The following resources are evaluated in this EA: land use; airspace; noise; air quality; water resources; biological resources; cultural resources; geology, topography, and soils; hazardous and toxic materials and waste (HTMW); traffic and transportation; infrastructure and utilities; socioeconomics, environmental justice, and protection of children; and human health and safety.

Please note that scoping for the EA is expected to be conducted virtually due to the ongoing coronavirus (COVID-19) pandemic. Informational materials will be posted on the project website at <u>https://www.nab.usace.army.mil/ERCA/</u>.

"LEADERS IN EXCELLENCE"

As we are beginning the analysis of the above-referenced resource areas, I would like to invite your input on the anticipated APE for this undertaking. As discussed previously, more information about specific project plans will be provided for review as they are developed to better assist in evaluating the impacts the proposed project may create. I understand that information that you provide on tribal religious or cultural items will be offered voluntarily in the spirit of assisting with our decision making for the project. Based on the available information regarding the proposed action, we welcome any information you would like to share that might be relevant to potential impacts and should be evaluated in the EA.

Any information pertaining to whether this action has the potential to affect tribal trust, subsistence, and/or cultural resources or if tribal rights and/or any protected resources may be affected by this proposed action would be greatly appreciated. Any general comments you may have on the proposed action and proposed alternatives, including discussing possible actions that would benefit your tribe, would also be welcome. I would be happy to answer any questions you may have about the project at this stage. Feel free to connect with me about the project via the contact information listed below. All information provided will be treated with the utmost confidentiality and in accordance with your wishes of how and whether this information can be used. I am also interested in locating any official tribal histories or historical reference materials that are more accurate and/or preferred by your tribe.


Determinations on the Army's process to identify historic properties within the APE and evaluation and effects determinations made in accordance with Section 106 of the NHPA will be made in consultation with all affected Native American tribes, as well as the State Historic Preservation Offices, and the interested public.

If you have questions or concerns, or require further information, please feel free to contact the Director of Public Works, Bradford Britain at bradford.d.britain.civ@army.mil or at (703) 806-3017.

Sincerely,

oshua P. SeGraves

Colonel, U.S. Army Commanding

DEPARTMENT OF THE ARMY US ARMY INSTALLATION MANAGEMENT COMMAND HEADQUARTERS, UNITED STATES ARMY GARRISON, FORT BELVOIR 9820 FLAGLER ROAD, SUITE 213 FORT BELVOIR, VIRGINIA 22060-5928

Directorate of Public Works

Chief Kenneth Branham Monacan Indian Nation 111 Highview Drive Madison Heights, VA 24572

Dear Chief Branham:

The Army recognizes its responsibilities to maintain Government-to-Government relationship with all tribes affected by activities on Army Installations and our federal trust responsibility for those lands. In the interest of early and frequent communication under Section 106 of the National Historic Preservation Act of 1966 (NHPA), as amended, pursuant to 36 Code of Federal Regulations (CFR) Part 800.3(f)(2) and as part of the Department of Defense's policy for Government-to-Government consultation with Native American tribes, 1 am writing to inform you that the Army is beginning the scoping process to prepare an Environmental Assessment (EA) for the proposed construction and operation of an approximately 525,000 square foot warehouse and administrative building with associated parking and covered storage on Fort Belvoir's North Area (FBNA), Fort Belvoir, Virginia.

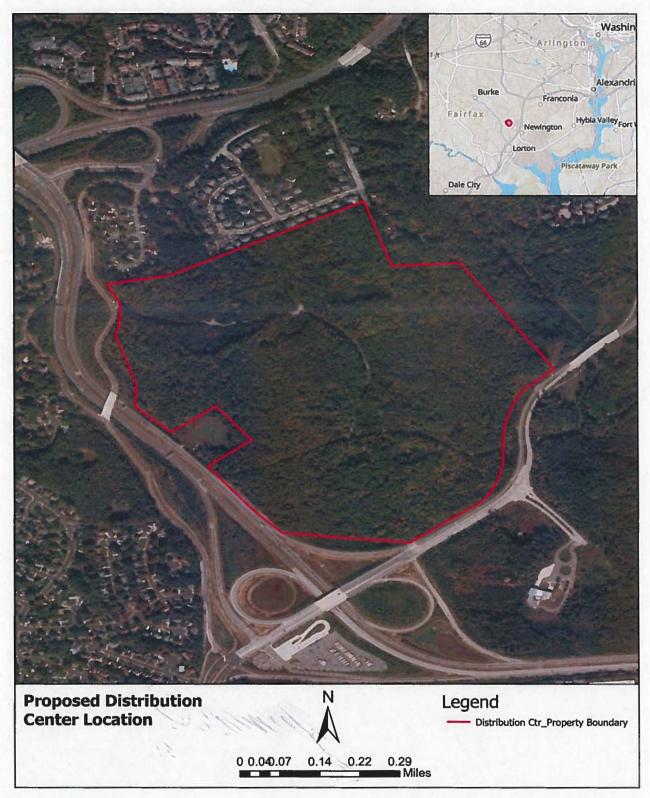
The Army will be preparing the EA under the National Environmental Policy Act of 1969 (NEPA) (42 United States Code Section 4321 *et seq.*), the Council on Environmental Quality regulations implementing NEPA (40 CFR Parts 1500–1508), and the Army's regulations implementing NEPA (32 CFR Part 651). This project is in the early stages of planning. As soon as more detailed project information has been developed, formal tribal consultation will be initiated. Current information about the Proposed Action can be found on our website at the following: <u>https://www.nab.usace.army.mil/ERCA/</u>.

The purpose of this EA is to inform decision-makers, tribes, stakeholders, and the public of the potential environmental consequences and any associated mitigations, as applicable. Affected Native American tribes and interested persons, organizations, and agencies will have multiple opportunities to provide input on the proposed project. The following resources are evaluated in this EA: land use; airspace; noise; air quality; water resources; biological resources; cultural resources; geology, topography, and soils; hazardous and toxic materials and waste (HTMW); traffic and transportation; infrastructure and utilities; socioeconomics, environmental justice, and protection of children; and human health and safety.

Please note that scoping for the EA is expected to be conducted virtually due to the ongoing coronavirus (COVID-19) pandemic. Informational materials will be posted on the project website at <u>https://www.nab.usace.army.mil/ERCA/</u>.

"LEADERS IN EXCELLENCE"

As we are beginning the analysis of the above-referenced resource areas, I would like to invite your input on the anticipated APE for this undertaking. As discussed previously, more information about specific project plans will be provided for review as they are developed to better assist in evaluating the impacts the proposed project may create. I understand that information that you provide on tribal religious or cultural items will be offered voluntarily in the spirit of assisting with our decision making for the project. Based on the available information regarding the proposed action, we welcome any information you would like to share that might be relevant to potential impacts and should be evaluated in the EA.


Any information pertaining to whether this action has the potential to affect tribal trust, subsistence, and/or cultural resources or if tribal rights and/or any protected resources may be affected by this proposed action would be greatly appreciated. Any general comments you may have on the proposed action and proposed alternatives, including discussing possible actions that would benefit your tribe, would also be welcome. I would be happy to answer any questions you may have about the project at this stage. Feel free to connect with me about the project via the contact information listed below. All information provided will be treated with the utmost confidentiality and in accordance with your wishes of how and whether this information can be used. I am also interested in locating any official tribal histories or historical reference materials that are more accurate and/or preferred by your tribe.

Determinations on the Army's process to identify historic properties within the APE and evaluation and effects determinations made in accordance with Section 106 of the NHPA will be made in consultation with all affected Native American tribes, as well as the State Historic Preservation Offices, and the interested public.

If you have questions or concerns, or require further information, please feel free to contact the Director of Public Works, Bradford Britain at bradford.d.britain.civ@army.mil or at (703) 806-3017.

Sincerely,

Joshua P. SeGraves

DEPARTMENT OF THE ARMY US ARMY INSTALLATION MANAGEMENT COMMAND HEADQUARTERS, UNITED STATES ARMY GARRISON, FORT BELVOIR 9820 FLAGLER ROAD, SUITE 213 FORT BELVOIR, VIRGINIA 22060-5928

Directorate of Public Works

Chief Earl L. Bass Nansemond Indian Nation 1001 Pembroke Lane Suffolk, VA 23434

Dear Chief Bass:

The Army recognizes its responsibilities to maintain Government-to-Government relationship with all tribes affected by activities on Army Installations and our federal trust responsibility for those lands. In the interest of early and frequent communication under Section 106 of the National Historic Preservation Act of 1966 (NHPA), as amended, pursuant to 36 Code of Federal Regulations (CFR) Part 800.3(f)(2) and as part of the Department of Defense's policy for Government-to-Government consultation with Native American tribes, I am writing to inform you that the Army is beginning the scoping process to prepare an Environmental Assessment (EA) for the proposed construction and operation of an approximately 525,000 square foot warehouse and administrative building with associated parking and covered storage on Fort Belvoir's North Area (FBNA), Fort Belvoir, Virginia.

The Army will be preparing the EA under the National Environmental Policy Act of 1969 (NEPA) (42 United States Code Section 4321 *et seq.*), the Council on Environmental Quality regulations implementing NEPA (40 CFR Parts 1500–1508), and the Army's regulations implementing NEPA (32 CFR Part 651). This project is in the early stages of planning. As soon as more detailed project information has been developed, formal tribal consultation will be initiated. Current information about the Proposed Action can be found on our website at the following: <u>https://www.nab.usace.army.mil/ERCA/</u>.

The purpose of this EA is to inform decision-makers, tribes, stakeholders, and the public of the potential environmental consequences and any associated mitigations, as applicable. Affected Native American tribes and interested persons, organizations, and agencies will have multiple opportunities to provide input on the proposed project. The following resources are evaluated in this EA: land use; airspace; noise; air quality; water resources; biological resources; cultural resources; geology, topography, and soils; hazardous and toxic materials and waste (HTMW); traffic and transportation; infrastructure and utilities; socioeconomics, environmental justice, and protection of children; and human health and safety.

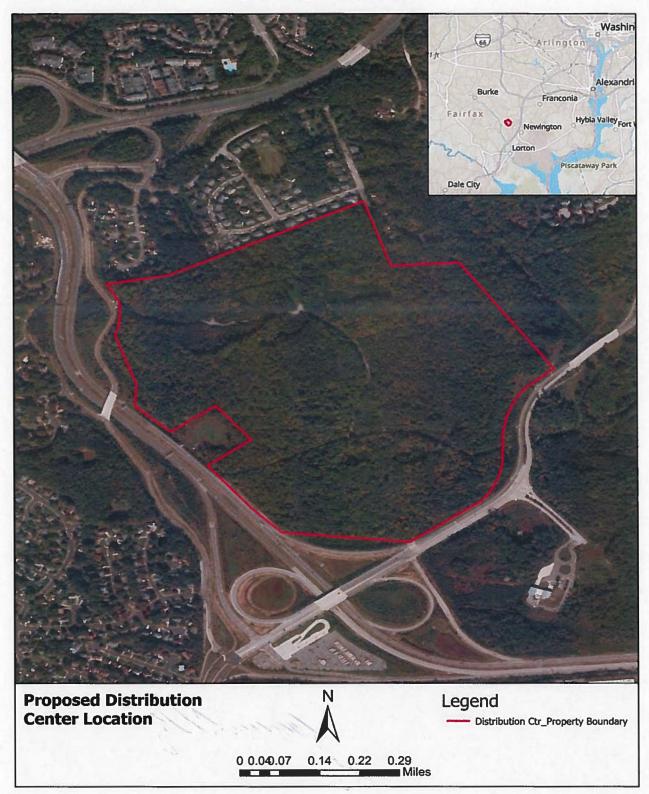
Please note that scoping for the EA is expected to be conducted virtually due to the ongoing coronavirus (COVID-19) pandemic. Informational materials will be posted on the project website at <u>https://www.nab.usace.army.mil/ERCA/</u>.

"LEADERS IN EXCELLENCE"

-2-

As we are beginning the analysis of the above-referenced resource areas, I would like to invite your input on the anticipated APE for this undertaking. As discussed previously, more information about specific project plans will be provided for review as they are developed to better assist in evaluating the impacts the proposed project may create. I understand that information that you provide on tribal religious or cultural items will be offered voluntarily in the spirit of assisting with our decision making for the project. Based on the available information regarding the proposed action, we welcome any information you would like to share that might be relevant to potential impacts and should be evaluated in the EA.

Any information pertaining to whether this action has the potential to affect tribal trust, subsistence, and/or cultural resources or if tribal rights and/or any protected resources may be affected by this proposed action would be greatly appreciated. Any general comments you may have on the proposed action and proposed alternatives, including discussing possible actions that would benefit your tribe, would also be welcome. I would be happy to answer any questions you may have about the project at this stage. Feel free to connect with me about the project via the contact information listed below. All information provided will be treated with the utmost confidentiality and in accordance with your wishes of how and whether this information can be used. I am also interested in locating any official tribal histories or historical reference materials that are more accurate and/or preferred by your tribe.


Determinations on the Army's process to identify historic properties within the APE and evaluation and effects determinations made in accordance with Section 106 of the NHPA will be made in consultation with all affected Native American tribes, as well as the State Historic Preservation Offices, and the interested public.

If you have questions or concerns, or require further information, please feel free to contact the Director of Public Works, Bradford Britain at bradford.d.britain.civ@army.mil or at (703) 806-3017.

Sincerely,

Commanding

Joshua P. SeGraves Colonel, U.S. Army

DEPARTMENT OF THE ARMY US ARMY INSTALLATION MANAGEMENT COMMAND HEADQUARTERS, UNITED STATES ARMY GARRISON, FORT BELVOIR 9820 FLAGLER ROAD, SUITE 213 FORT BELVOIR, VIRGINIA 22060-5928

Directorate of Public Works

Chief Robert Gray Pamunkey Indian Tribe 1054 Pocahontas Trail King William, VA 23086

Dear Chief Gray:

The Army recognizes its responsibilities to maintain Government-to-Government relationship with all tribes affected by activities on Army Installations and our federal trust responsibility for those lands. In the interest of early and frequent communication under Section 106 of the National Historic Preservation Act of 1966 (NHPA), as amended, pursuant to 36 Code of Federal Regulations (CFR) Part 800.3(f)(2) and as part of the Department of Defense's policy for Government-to-Government consultation with Native American tribes, I am writing to inform you that the Army is beginning the scoping process to prepare an Environmental Assessment (EA) for the proposed construction and operation of an approximately 525,000 square foot warehouse and administrative building with associated parking and covered storage on Fort Belvoir's North Area (FBNA), Fort Belvoir, Virginia.

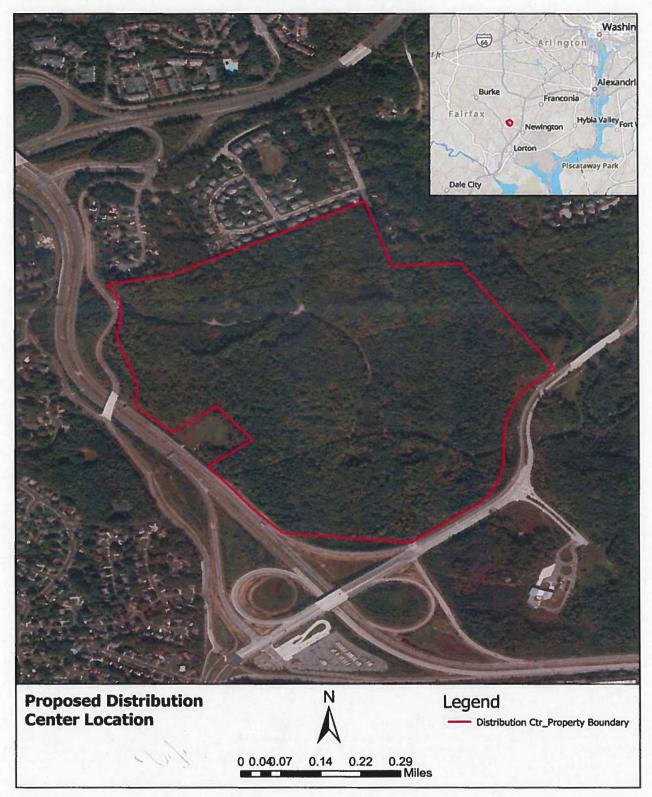
The Army will be preparing the EA under the National Environmental Policy Act of 1969 (NEPA) (42 United States Code Section 4321 *et seq.*), the Council on Environmental Quality regulations implementing NEPA (40 CFR Parts 1500–1508), and the Army's regulations implementing NEPA (32 CFR Part 651). This project is in the early stages of planning. As soon as more detailed project information has been developed, formal tribal consultation will be initiated. Current information about the Proposed Action can be found on our website at the following: <u>https://www.nab.usace.army.mil/ERCA/</u>.

The purpose of this EA is to inform decision-makers, tribes, stakeholders, and the public of the potential environmental consequences and any associated mitigations, as applicable. Affected Native American tribes and interested persons, organizations, and agencies will have multiple opportunities to provide input on the proposed project. The following resources are evaluated in this EA: land use; airspace; noise; air quality; water resources; biological resources; cultural resources; geology, topography, and soils; hazardous and toxic materials and waste (HTMW); traffic and transportation; infrastructure and utilities; socioeconomics, environmental justice, and protection of children; and human health and safety.

Please note that scoping for the EA is expected to be conducted virtually due to the ongoing coronavirus (COVID-19) pandemic. Informational materials will be posted on the project website at <u>https://www.nab.usace.army.mil/ERCA/</u>.

"LEADERS IN EXCELLENCE"

As we are beginning the analysis of the above-referenced resource areas, I would like to invite your input on the anticipated APE for this undertaking. As discussed previously, more information about specific project plans will be provided for review as they are developed to better assist in evaluating the impacts the proposed project may create. I understand that information that you provide on tribal religious or cultural items will be offered voluntarily in the spirit of assisting with our decision making for the project. Based on the available information regarding the proposed action, we welcome any information you would like to share that might be relevant to potential impacts and should be evaluated in the EA.


Any information pertaining to whether this action has the potential to affect tribal trust, subsistence, and/or cultural resources or if tribal rights and/or any protected resources may be affected by this proposed action would be greatly appreciated. Any general comments you may have on the proposed action and proposed alternatives, including discussing possible actions that would benefit your tribe, would also be welcome. I would be happy to answer any questions you may have about the project at this stage. Feel free to connect with me about the project via the contact information listed below. All information provided will be treated with the utmost confidentiality and in accordance with your wishes of how and whether this information can be used. I am also interested in locating any official tribal histories or historical reference materials that are more accurate and/or preferred by your tribe.

Determinations on the Army's process to identify historic properties within the APE and evaluation and effects determinations made in accordance with Section 106 of the NHPA will be made in consultation with all affected Native American tribes, as well as the State Historic Preservation Offices, and the interested public.

If you have questions or concerns, or require further information, please feel free to contact the Director of Public Works, Bradford Britain at bradford.d.britain.civ@army.mil or at (703) 806-3017.

Sincerely,

Joshua P. SeGraves Colonel, U.S. Army Commanding

DEPARTMENT OF THE ARMY US ARMY INSTALLATION MANAGEMENT COMMAND HEADQUARTERS, UNITED STATES ARMY GARRISON, FORT BELVOIR 9820 FLAGLER ROAD, SUITE 213 FORT BELVOIR, VIRGINIA 22060-5928

Directorate of Public Works

Chief W. Frank Adams Upper Mattaponi Tribe 13476 King William Road King William, VA 23086

Dear Chief Adams:

The Army recognizes its responsibilities to maintain Government-to-Government relationship with all tribes affected by activities on Army Installations and our federal trust responsibility for those lands. In the interest of early and frequent communication under Section 106 of the National Historic Preservation Act of 1966 (NHPA), as amended, pursuant to 36 Code of Federal Regulations (CFR) Part 800.3(f)(2) and as part of the Department of Defense's policy for Government-to-Government consultation with Native American tribes, I am writing to inform you that the Army is beginning the scoping process to prepare an Environmental Assessment (EA) for the proposed construction and operation of an approximately 525,000 square foot warehouse and administrative building with associated parking and covered storage on Fort Belvoir's North Area (FBNA), Fort Belvoir, Virginia.

The Army will be preparing the EA under the National Environmental Policy Act of 1969 (NEPA) (42 United States Code Section 4321 *et seq.*), the Council on Environmental Quality regulations implementing NEPA (40 CFR Parts 1500–1508), and the Army's regulations implementing NEPA (32 CFR Part 651). This project is in the early stages of planning. As soon as more detailed project information has been developed, formal tribal consultation will be initiated. Current information about the Proposed Action can be found on our website at the following: https://www.nab.usace.army.mil/ERCA/.

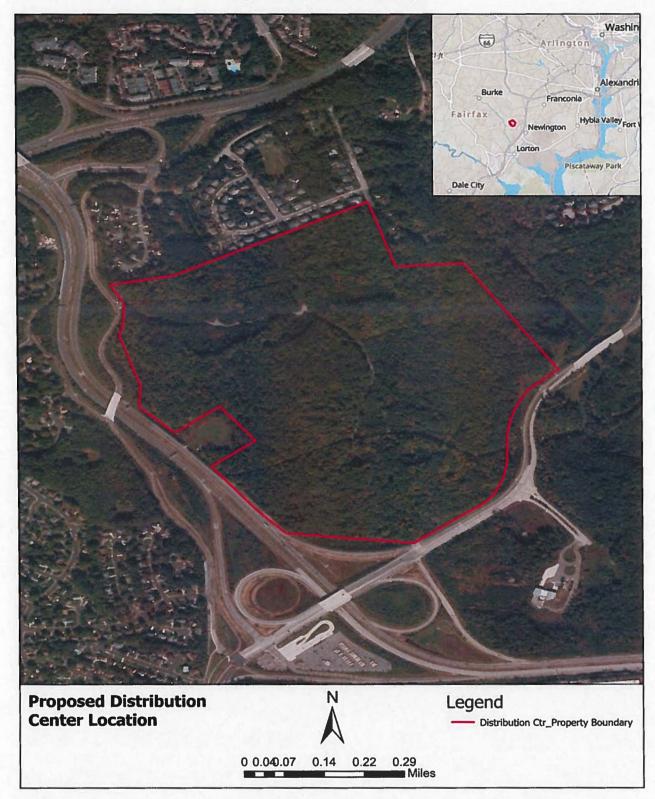
The purpose of this EA is to inform decision-makers, tribes, stakeholders, and the public of the potential environmental consequences and any associated mitigations, as applicable. Affected Native American tribes and interested persons, organizations, and agencies will have multiple opportunities to provide input on the proposed project. The following resources are evaluated in this EA: land use; airspace; noise; air quality; water resources; biological resources; cultural resources; geology, topography, and soils; hazardous and toxic materials and waste (HTMW); traffic and transportation; infrastructure and utilities; socioeconomics, environmental justice, and protection of children; and human health and safety.

Please note that scoping for the EA is expected to be conducted virtually due to the ongoing coronavirus (COVID-19) pandemic. Informational materials will be posted on the project website at <u>https://www.nab.usace.army.mil/ERCA/</u>.

"LEADERS IN EXCELLENCE"

As we are beginning the analysis of the above-referenced resource areas, I would like to invite your input on the anticipated APE for this undertaking. As discussed previously, more information about specific project plans will be provided for review as they are developed to better assist in evaluating the impacts the proposed project may create. I understand that information that you provide on tribal religious or cultural items will be offered voluntarily in the spirit of assisting with our decision making for the project. Based on the available information regarding the proposed action, we welcome any information you would like to share that might be relevant to potential impacts and should be evaluated in the EA.

Any information pertaining to whether this action has the potential to affect tribal trust, subsistence, and/or cultural resources or if tribal rights and/or any protected resources may be affected by this proposed action would be greatly appreciated. Any general comments you may have on the proposed action and proposed alternatives, including discussing possible actions that would benefit your tribe, would also be welcome. I would be happy to answer any questions you may have about the project at this stage. Feel free to connect with me about the project via the contact information listed below. All information provided will be treated with the utmost confidentiality and in accordance with your wishes of how and whether this information can be used. I am also interested in locating any official tribal histories or historical reference materials that are more accurate and/or preferred by your tribe.


Determinations on the Army's process to identify historic properties within the APE and evaluation and effects determinations made in accordance with Section 106 of the NHPA will be made in consultation with all affected Native American tribes, as well as the State Historic Preservation Offices, and the interested public.

If you have questions or concerns, or require further information, please feel free to contact the Director of Public Works, Bradford Britain at bradford.d.britain.civ@army.mil or at (703) 806-3017.

Sincerely,

Joshua P. SeGraves

Colonel, U.S. Army Commanding

DEPARTMENT OF THE ARMY US ARMY INSTALLATION MANAGEMENT COMMAND HEADQUARTERS, UNITED STATES ARMY GARRISON, FORT BELVOIR 9820 FLAGLER ROAD, SUITE 213 FORT BELVOIR, VIRGINIA 22060-5928

Directorate of Public Works

Chief Robert Gray Pamunkey Indian Tribe 1054 Pocahontas Trail King William, VA 23086

Dear Chief Gray:

The Army recognizes its responsibilities to maintain Government-to-Government relationship with all tribes affected by activities on Army Installations and our federal trust responsibility for those lands. In the interest of early and frequent communication under Section 106 of the National Historic Preservation Act of 1966 (NHPA), as amended, pursuant to 36 Code of Federal Regulations (CFR) Part 800.3(f)(2) and as part of the Department of Defense's policy for Government-to-Government consultation with Native American tribes, I am writing to inform you that the Army is beginning the scoping process to prepare an Environmental Assessment (EA) for the proposed construction and operation of an approximately 525,000 square foot warehouse and administrative building with associated parking and covered storage on Fort Belvoir's North Area (FBNA), Fort Belvoir, Virginia.

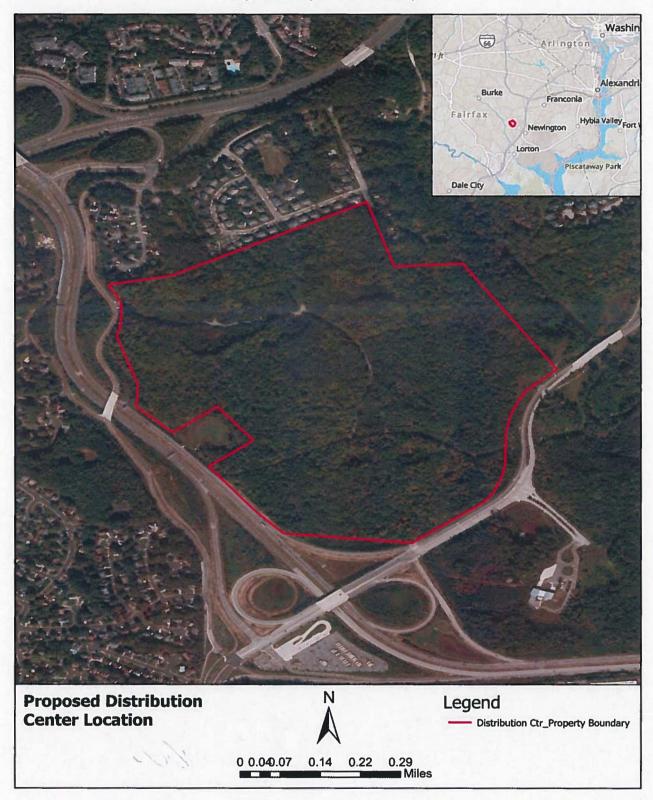
The Army will be preparing the EA under the National Environmental Policy Act of 1969 (NEPA) (42 United States Code Section 4321 *et seq.*), the Council on Environmental Quality regulations implementing NEPA (40 CFR Parts 1500–1508), and the Army's regulations implementing NEPA (32 CFR Part 651). This project is in the early stages of planning. As soon as more detailed project information has been developed, formal tribal consultation will be initiated. Current information about the Proposed Action can be found on our website at the following: https://www.nab.usace.army.mil/ERCA/.

The purpose of this EA is to inform decision-makers, tribes, stakeholders, and the public of the potential environmental consequences and any associated mitigations, as applicable. Affected Native American tribes and interested persons, organizations, and agencies will have multiple opportunities to provide input on the proposed project. The following resources are evaluated in this EA: land use; airspace; noise; air quality; water resources; biological resources; cultural resources; geology, topography, and soils; hazardous and toxic materials and waste (HTMW); traffic and transportation; infrastructure and utilities; socioeconomics, environmental justice, and protection of children; and human health and safety.

Please note that scoping for the EA is expected to be conducted virtually due to the ongoing coronavirus (COVID-19) pandemic. Informational materials will be posted on the project website at <u>https://www.nab.usace.army.mil/ERCA/</u>.

"LEADERS IN EXCELLENCE"

As we are beginning the analysis of the above-referenced resource areas, I would like to invite your input on the anticipated APE for this undertaking. As discussed previously, more information about specific project plans will be provided for review as they are developed to better assist in evaluating the impacts the proposed project may create. I understand that information that you provide on tribal religious or cultural items will be offered voluntarily in the spirit of assisting with our decision making for the project. Based on the available information regarding the proposed action, we welcome any information you would like to share that might be relevant to potential impacts and should be evaluated in the EA.


Any information pertaining to whether this action has the potential to affect tribal trust, subsistence, and/or cultural resources or if tribal rights and/or any protected resources may be affected by this proposed action would be greatly appreciated. Any general comments you may have on the proposed action and proposed alternatives, including discussing possible actions that would benefit your tribe, would also be welcome. I would be happy to answer any questions you may have about the project at this stage. Feel free to connect with me about the project via the contact information listed below. All information provided will be treated with the utmost confidentiality and in accordance with your wishes of how and whether this information can be used. I am also interested in locating any official tribal histories or historical reference materials that are more accurate and/or preferred by your tribe.

Determinations on the Army's process to identify historic properties within the APE and evaluation and effects determinations made in accordance with Section 106 of the NHPA will be made in consultation with all affected Native American tribes, as well as the State Historic Preservation Offices, and the interested public.

If you have questions or concerns, or require further information, please feel free to contact the Director of Public Works, Bradford Britain at bradford.d.britain.civ@army.mil or at (703) 806-3017.

Sincerely,

Colonel, U.S. Army Commanding

DEPARTMENT OF THE ARMY US ARMY INSTALLATION MANAGEMENT COMMAND HEADQUARTERS, UNITED STATES ARMY GARRISON, FORT BELVOIR 9820 FLAGLER ROAD, SUITE 213 FORT BELVOIR, VIRGINIA 22060-5928

Directorate of Public Works

Chief W. Frank Adams Upper Mattaponi Tribe 13476 King William Road King William, VA 23086

Dear Chief Adams:

The Army recognizes its responsibilities to maintain Government-to-Government relationship with all tribes affected by activities on Army Installations and our federal trust responsibility for those lands. In the interest of early and frequent communication under Section 106 of the National Historic Preservation Act of 1966 (NHPA), as amended, pursuant to 36 Code of Federal Regulations (CFR) Part 800.3(f)(2) and as part of the Department of Defense's policy for Government-to-Government consultation with Native American tribes, I am writing to inform you that the Army is beginning the scoping process to prepare an Environmental Assessment (EA) for the proposed construction and operation of an approximately 525,000 square foot warehouse and administrative building with associated parking and covered storage on Fort Belvoir's North Area (FBNA), Fort Belvoir, Virginia.

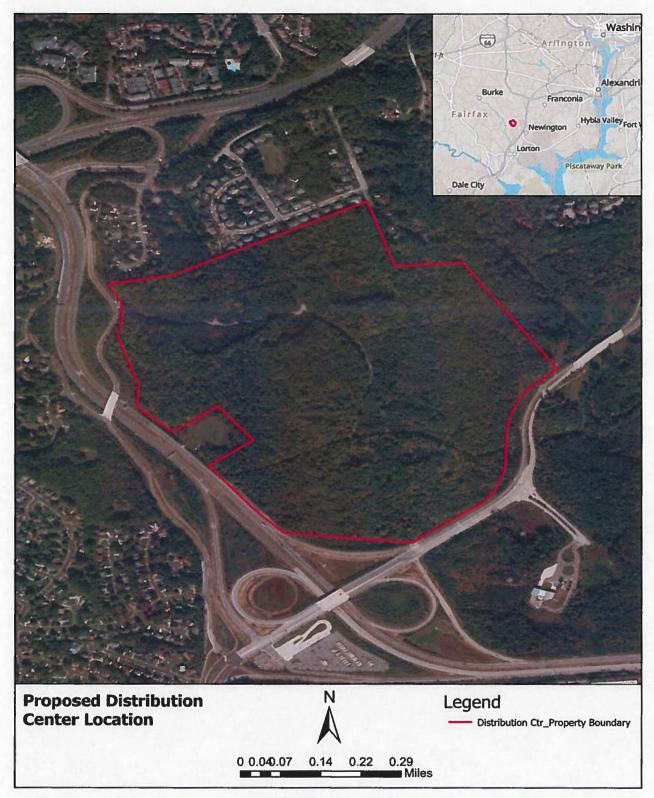
The Army will be preparing the EA under the National Environmental Policy Act of 1969 (NEPA) (42 United States Code Section 4321 *et seq.*), the Council on Environmental Quality regulations implementing NEPA (40 CFR Parts 1500–1508), and the Army's regulations implementing NEPA (32 CFR Part 651). This project is in the early stages of planning. As soon as more detailed project information has been developed, formal tribal consultation will be initiated. Current information about the Proposed Action can be found on our website at the following: https://www.nab.usace.army.mil/ERCA/.

The purpose of this EA is to inform decision-makers, tribes, stakeholders, and the public of the potential environmental consequences and any associated mitigations, as applicable. Affected Native American tribes and interested persons, organizations, and agencies will have multiple opportunities to provide input on the proposed project. The following resources are evaluated in this EA: land use; airspace; noise; air quality; water resources; biological resources; cultural resources; geology, topography, and soils; hazardous and toxic materials and waste (HTMW); traffic and transportation; infrastructure and utilities; socioeconomics, environmental justice, and protection of children; and human health and safety.

Please note that scoping for the EA is expected to be conducted virtually due to the ongoing coronavirus (COVID-19) pandemic. Informational materials will be posted on the project website at <u>https://www.nab.usace.army.mil/ERCA/</u>.

"LEADERS IN EXCELLENCE"

As we are beginning the analysis of the above-referenced resource areas, I would like to invite your input on the anticipated APE for this undertaking. As discussed previously, more information about specific project plans will be provided for review as they are developed to better assist in evaluating the impacts the proposed project may create. I understand that information that you provide on tribal religious or cultural items will be offered voluntarily in the spirit of assisting with our decision making for the project. Based on the available information regarding the proposed action, we welcome any information you would like to share that might be relevant to potential impacts and should be evaluated in the EA.


Any information pertaining to whether this action has the potential to affect tribal trust, subsistence, and/or cultural resources or if tribal rights and/or any protected resources may be affected by this proposed action would be greatly appreciated. Any general comments you may have on the proposed action and proposed alternatives, including discussing possible actions that would benefit your tribe, would also be welcome. I would be happy to answer any questions you may have about the project at this stage. Feel free to connect with me about the project via the contact information listed below. All information provided will be treated with the utmost confidentiality and in accordance with your wishes of how and whether this information can be used. I am also interested in locating any official tribal histories or historical reference materials that are more accurate and/or preferred by your tribe.

Determinations on the Army's process to identify historic properties within the APE and evaluation and effects determinations made in accordance with Section 106 of the NHPA will be made in consultation with all affected Native American tribes, as well as the State Historic Preservation Offices, and the interested public.

If you have questions or concerns, or require further information, please feel free to contact the Director of Public Works, Bradford Britain at bradford.d.britain.civ@army.mil or at (703) 806-3017.

Sincerely,

Joshua P. SeGraves Colonel, U.S. Army Commanding

December 22, 2021

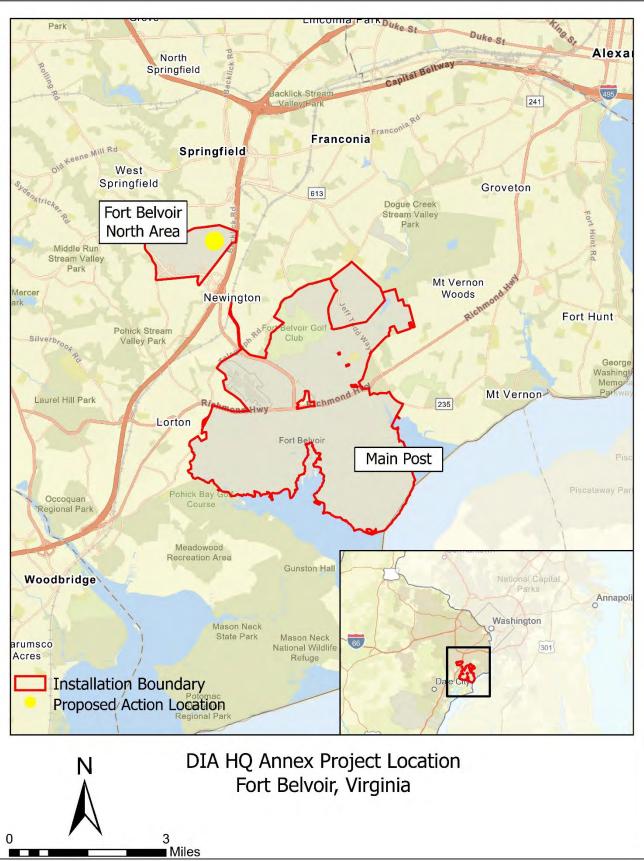
Ms. Genevieve LaRouche Field Supervisor U.S. Fish and Wildlife Service Chesapeake Bay Field Office 177 Admiral Cochrane Drive Annapolis, Maryland 21401

Dear Ms. LaRouche,

The purpose of this letter is to initiate consultation with your office under Section 7 of the Endangered Species Act for a proposed undertaking by a project proponent to construct a distribution center on Fort Belvoir's North Area, Fort Belvoir, Fairfax County, Virginia (Enclosure 1).

The purpose of the project is to construct an approximately 525,000 square foot distribution center consolidated complex consisting of a high bay warehouse, a two-story administrative building, a truck maintenance/ refueling building, covered/enclosed storage buildings and an entry control facility (gate house and vehicle inspection) (Figure 1). The project will also require new electrical, water, gas, sanitary sewer lines; information systems distribution; lighting; parking; curb and gutter; sidewalks; storm drainage; landscaping; and other site improvements.

This facility will support the delivery and receipt of materials within and across the Washington Metropolitan Area, requiring close proximity within the National Capital Region to achieve distribution efficiencies. The action would also provide for compliance with Office of Management and Budget (OMB) guidance to identify "good stewardship of taxpayer resources" and increase joint site usage. The distribution center expects minimal truck traffic compared to a typical industrial distribution center.


Fort Belvoir obtained an Official Species List and Self-Certification Letter from the U.S. Fish & Wildlife Service's Information for Planning and Consultation (IPaC) website for the proposed project (Enclosures 3 and 4). We request any additional information your office may have on the presence of federally protected animal and plant species listed by the Fish and Wildlife Coordination Act and Section 7 of the Endangered Species Act for the project areas shown on the enclosed site location map.

Please provide written comments within 30 days from the date of this letter to Wilamena Harback, Chief, Environmental Division, Directorate of Public Works, Building 1442, 9430 Jackson Loop, Fort Belvoir, Virginia 22060, or by email to wilamena.g.harback.civ@mail.mil. If you need further information, please contact Janesse Colon-Ruiz at 703-806-4008.

Fort Belvoir Env Office Chief Signature block

Enclosure 1: Site Location Map Enclosure 2: FBNA Conceptual Site Layout Enclosure 3: U.S. Fish & Wildlife Service's (IPaC) Official Species List Enclosure 4: Verification Letter for Northern Long-Eared Bat

Enclosure 1:

Enclosure 2:

United States Department of the Interior

FISH AND WILDLIFE SERVICE Virginia Ecological Services Field Office 6669 Short Lane Gloucester, VA 23061-4410 Phone: (804) 693-6694 Fax: (804) 693-9032 http://www.fws.gov/northeast/virginiafield/

February 22, 2022

In Reply Refer To: Project Code: 2022-0011272 Project Name: FNBA Distribution Center

Subject: List of threatened and endangered species that may occur in your proposed project location or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*). Any activity proposed on National Wildlife Refuge lands must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Migratory Birds: In addition to responsibilities to protect threatened and endangered species under the Endangered Species Act (ESA), there are additional responsibilities under the Migratory Bird Treaty Act (MBTA) and the Bald and Golden Eagle Protection Act (BGEPA) to protect native birds from project-related impacts. Any activity, intentional or unintentional, resulting in take of migratory birds, including eagles, is prohibited unless otherwise permitted by the U.S. Fish and Wildlife Service (50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)). For more information regarding these Acts see https://www.fws.gov/birds/policies-and-regulations.php.

The MBTA has no provision for allowing take of migratory birds that may be unintentionally killed or injured by otherwise lawful activities. It is the responsibility of the project proponent to comply with these Acts by identifying potential impacts to migratory birds and eagles within applicable NEPA documents (when there is a federal nexus) or a Bird/Eagle Conservation Plan (when there is no federal nexus). Proponents should implement conservation measures to avoid or minimize the production of project-related stressors or minimize the exposure of birds and their resources to the project-related stressors. For more information on avian stressors and recommended conservation measures see https://www.fws.gov/birds/bird-enthusiasts/threats-to-birds.php.

In addition to MBTA and BGEPA, Executive Order 13186: *Responsibilities of Federal Agencies to Protect Migratory Birds*, obligates all Federal agencies that engage in or authorize activities that might affect migratory birds, to minimize those effects and encourage conservation measures that will improve bird populations. Executive Order 13186 provides for the protection of both migratory birds and migratory bird habitat. For information regarding the implementation of Executive Order 13186, please visit https://www.fws.gov/birds/policies-and-regulations/ executive-orders/e0-13186.php.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Project Code in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

- Official Species List
- USFWS National Wildlife Refuges and Fish Hatcheries
- Migratory Birds

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

Virginia Ecological Services Field Office 6669 Short Lane Gloucester, VA 23061-4410 (804) 693-6694

Project Summary

Project Code:	2022-0011272
Event Code:	None
Project Name:	FNBA Distribution Center
Project Type:	Military Development
Project Description:	Construction and Operation of a new distribution facility at Fort Belvoir
	North Area

Project Location:

Approximate location of the project can be viewed in Google Maps: <u>https://www.google.com/maps/@38.7531398,-77.20868067034789,14z</u>

Counties: Fairfax County, Virginia

Endangered Species Act Species

There is a total of 3 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Mammals

NAME	STATUS
Northern Long-eared Bat <i>Myotis septentrionalis</i> No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/9045</u>	Threatened
Insects NAME	STATUS
Monarch Butterfly <i>Danaus plexippus</i> No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/9743</u>	Candidate
Flowering Plants	
NAME	STATUS
Small Whorled Pogonia <i>Isotria medeoloides</i> Population: No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/1890</u>	Threatened

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

USFWS National Wildlife Refuge Lands And Fish Hatcheries

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS OR FISH HATCHERIES WITHIN YOUR PROJECT AREA.

Migratory Birds

Certain birds are protected under the Migratory Bird Treaty Act^{1} and the Bald and Golden Eagle Protection Act^{2} .

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The <u>Migratory Birds Treaty Act</u> of 1918.
- 2. The <u>Bald and Golden Eagle Protection Act</u> of 1940.
- 3. 50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)

The birds listed below are birds of particular concern either because they occur on the <u>USFWS</u> <u>Birds of Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data</u> <u>mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME	BREEDING SEASON
Bald Eagle Haliaeetus leucocephalus This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. https://ecos.fws.gov/ecp/species/1626	Breeds Sep 1 to Jul 31
Black-billed Cuckoo Coccyzus erythropthalmus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/9399</u>	Breeds May 15 to Oct 10

NAME	BREEDING SEASON
Prairie Warbler <i>Dendroica discolor</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds May 1 to Jul 31
Prothonotary Warbler <i>Protonotaria citrea</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds Apr 1 to Jul 31
Red-headed Woodpecker <i>Melanerpes erythrocephalus</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds May 10 to Sep 10
Rusty Blackbird <i>Euphagus carolinus</i> This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA	Breeds elsewhere
Wood Thrush <i>Hylocichla mustelina</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds May 10 to Aug 31

Probability Of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12

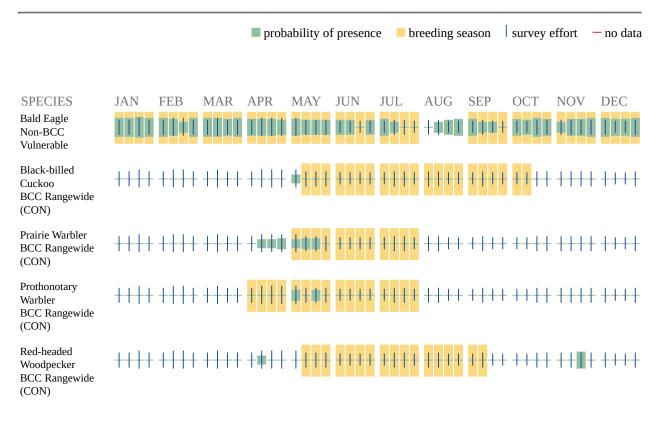
(0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.

3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

Breeding Season (=)

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort ()


Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.

No Data (-)

A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

Rusty Blackbird BCC - BCR Wood Thrush ┼┼┼┼┼┼┼┼┼┼┼┼╢║╢╢╢╢╟┼╢╢║╢╬╢╎┼╬┼┼╶┼╬┼╢║╓┼┼┼╶┼┼┼┼╶┼┼┼┼

BCC Rangewide (CON)

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/ birds-of-conservation-concern.php
- Measures for avoiding and minimizing impacts to birds <u>http://www.fws.gov/birds/</u> management/project-assessment-tools-and-guidance/ conservation-measures.php
- Nationwide conservation measures for birds <u>http://www.fws.gov/migratorybirds/pdf/</u> management/nationwidestandardconservationmeasures.pdf

Migratory Birds FAQ

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS Birds of Conservation Concern (BCC) and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the Avian Knowledge Network (AKN). The AKN data is based on a growing collection of survey, banding, and citizen science datasets and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (Eagle Act requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the AKN Phenology Tool.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey, banding, and citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: <u>The Cornell Lab</u> of <u>Ornithology All About Birds Bird Guide</u>, or (if you are unsuccessful in locating the bird of interest there), the <u>Cornell Lab of Ornithology Neotropical Birds guide</u>. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS Integrative Statistical</u> <u>Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic</u> <u>Outer Continental Shelf</u> project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAO "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

IPaC User Contact Information

Name:	Christina Olson
Address:	2 Hopkins Plaza
City:	Baltimore
State:	MD
Zip:	21201
Email	christina.a.olson@usace.army.mil
Phone:	5412702878

United States Department of the Interior

FISH AND WILDLIFE SERVICE Virginia Ecological Services Field Office 6669 Short Lane Gloucester, VA 23061-4410 Phone: (804) 693-6694 Fax: (804) 693-9032 http://www.fws.gov/northeast/virginiafield/

March 04, 2022

In Reply Refer To: Project code: 2022-0011272 Project Name: FNBA Distribution Center

Subject: Verification letter for the 'FNBA Distribution Center' project under the January 5, 2016, Programmatic Biological Opinion on Final 4(d) Rule for the Northern Longeared Bat and Activities Excepted from Take Prohibitions.

Dear Christina Olson:

The U.S. Fish and Wildlife Service (Service) received on March 04, 2022 your effects determination for the 'FNBA Distribution Center' (the Action) using the northern long-eared bat (*Myotis septentrionalis*) key within the Information for Planning and Consultation (IPaC) system. This IPaC key assists users in determining whether a Federal action is consistent with the activities analyzed in the Service's January 5, 2016, Programmatic Biological Opinion (PBO). The PBO addresses activities excepted from "take"^[1] prohibitions applicable to the northern long-eared bat under the Endangered Species Act of 1973 (ESA) (87 Stat.884, as amended; 16 U.S.C. 1531 et seq.).

Based upon your IPaC submission, the Action is consistent with activities analyzed in the PBO. The Action may affect the northern long-eared bat; however, any take that may occur as a result of the Action is not prohibited under the ESA Section 4(d) rule adopted for this species at 50 CFR §17.40(o). Unless the Service advises you within 30 days of the date of this letter that your IPaC-assisted determination was incorrect, this letter verifies that the PBO satisfies and concludes your responsibilities for this Action under ESA Section 7(a)(2) with respect to the northern long-eared bat.

Please report to our office any changes to the information about the Action that you submitted in IPaC, the results of any bat surveys conducted in the Action area, and any dead, injured, or sick northern long-eared bats that are found during Action implementation. If the Action is not completed within one year of the date of this letter, you must update and resubmit the information required in the IPaC key.

This IPaC-assisted determination allows you to rely on the PBO for compliance with ESA Section 7(a)(2) <u>only</u> for the northern long-eared bat. It **does not** apply to the following ESA-protected species that also may occur in the Action area:

- Monarch Butterfly Danaus plexippus Candidate
- Small Whorled Pogonia Isotria medeoloides Threatened

If the Action may affect other federally listed species besides the northern long-eared bat, a proposed species, and/or designated critical habitat, additional consultation between you and this Service office is required. If the Action may disturb bald or golden eagles, additional coordination with the Service under the Bald and Golden Eagle Protection Act is recommended.

^[1]Take means to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct [ESA Section 3(19)].

Action Description

You provided to IPaC the following name and description for the subject Action.

1. Name

FNBA Distribution Center

2. Description

The following description was provided for the project 'FNBA Distribution Center':

Construction and Operation of a new distribution facility at Fort Belvoir North Area

Approximate location of the project can be viewed in Google Maps: <u>https://www.google.com/</u> <u>maps/@38.75327195,-77.2086156714428,14z</u>

Determination Key Result

This Federal Action may affect the northern long-eared bat in a manner consistent with the description of activities addressed by the Service's PBO dated January 5, 2016. Any taking that may occur incidental to this Action is not prohibited under the final 4(d) rule at 50 CFR §17.40(o). Therefore, the PBO satisfies your responsibilities for this Action under ESA Section 7(a)(2) relative to the northern long-eared bat.

Determination Key Description: Northern Long-eared Bat 4(d) Rule

This key was last updated in IPaC on May 15, 2017. Keys are subject to periodic revision.

This key is intended for actions that may affect the threatened northern long-eared bat.

The purpose of the key for Federal actions is to assist determinations as to whether proposed actions are consistent with those analyzed in the Service's PBO dated January 5, 2016.

Federal actions that may cause prohibited take of northern long-eared bats, affect ESA-listed species other than the northern long-eared bat, or affect any designated critical habitat, require ESA Section 7(a)(2) consultation in addition to the use of this key. Federal actions that may

affect species proposed for listing or critical habitat proposed for designation may require a conference under ESA Section 7(a)(4).

Determination Key Result

This project may affect the threatened Northern long-eared bat; therefore, consultation with the Service pursuant to Section 7(a)(2) of the Endangered Species Act of 1973 (87 Stat.884, as amended; 16 U.S.C. 1531 et seq.) is required. However, based on the information you provided, this project may rely on the Service's January 5, 2016, *Programmatic Biological Opinion on Final 4(d) Rule for the Northern Long-Eared Bat and Activities Excepted from Take Prohibitions* to fulfill its Section 7(a)(2) consultation obligation.

Qualification Interview

- 1. Is the action authorized, funded, or being carried out by a Federal agency? *Yes*
- Have you determined that the proposed action will have "no effect" on the northern longeared bat? (If you are unsure select "No")

No

3. Will your activity purposefully Take northern long-eared bats?

No

4. [Semantic] Is the project action area located wholly outside the White-nose Syndrome Zone?

Automatically answered No

5. Have you contacted the appropriate agency to determine if your project is near a known hibernaculum or maternity roost tree?

Location information for northern long-eared bat hibernacula is generally kept in state Natural Heritage Inventory databases – the availability of this data varies state-by-state. Many states provide online access to their data, either directly by providing maps or by providing the opportunity to make a data request. In some cases, to protect those resources, access to the information may be limited. A web page with links to state Natural Heritage Inventory databases and other sources of information on the locations of northern long-eared bat roost trees and hibernacula is available at www.fws.gov/midwest/endangered/mammals/nleb/nhisites.html.

Yes

6. Will the action affect a cave or mine where northern long-eared bats are known to hibernate (i.e., hibernaculum) or could it alter the entrance or the environment (physical or other alteration) of a hibernaculum?

No

7. Will the action involve Tree Removal?

Yes

- 8. Will the action only remove hazardous trees for the protection of human life or property? *No*
- 9. Will the action remove trees within 0.25 miles of a known northern long-eared bat hibernaculum at any time of year?

No

10. Will the action remove a known occupied northern long-eared bat maternity roost tree or any trees within 150 feet of a known occupied maternity roost tree from June 1 through July 31?

No

Project Questionnaire

If the project includes forest conversion, report the appropriate acreages below. Otherwise, type '0' in questions 1-3.

1. Estimated total acres of forest conversion:

160

2. If known, estimated acres of forest conversion from April 1 to October 31

0

3. If known, estimated acres of forest conversion from June 1 to July 31

0

If the project includes timber harvest, report the appropriate acreages below. Otherwise, type '0' in questions 4-6.

4. Estimated total acres of timber harvest

0

5. If known, estimated acres of timber harvest from April 1 to October 31

0

6. If known, estimated acres of timber harvest from June 1 to July 31

0

If the project includes prescribed fire, report the appropriate acreages below. Otherwise, type '0' in questions 7-9.

7. Estimated total acres of prescribed fire

0

8. If known, estimated acres of prescribed fire from April 1 to October 31

0

9. If known, estimated acres of prescribed fire from June 1 to July 31

0

If the project includes new wind turbines, report the megawatts of wind capacity below. Otherwise, type '0' in question 10.

10. What is the estimated wind capacity (in megawatts) of the new turbine(s)?

0

IPaC User Contact Information

Agency:Army Corps of EngineersName:Christina OlsonAddress:2 Hopkins PlazaCity:BaltimoreState:MDZip:21201Emailchristina.a.olson@usace.army.milPhone:5412702878

Lead Agency Contact Information

Lead Agency: Army

Name:	John John Pilcicki
Iname:	JOHII JOHII PHCICKI

- Email: john.l.pilcicki.civ@army.mil
- Phone: 7038053968

From:	Atkinson, Kelly
То:	<u>FBNA</u>
Subject:	[URL Verdict: Neutral][Non-DoD Source] FW: FBNA Distribution Center Request for Early Input Notice
Date:	Tuesday, April 19, 2022 3:28:40 PM
Attachments:	image001.png
	NCPC Fort Belvoir North Post Area Development - December 2021pdf
	NCPC Fort Belvoir North Post Area Development-signed.pdf

Good afternoon,

Please find below Fairfax County's early input comments on the Draft EA. Fairfax County requests the opportunity to comment on the Draft EA once published.

- Fairfax County previously commented on the FBNA Area Development Plan Master Plan at the request of NCPC (please see attached letters). In the most recent submission reviewed (December 2021), the FBNA Area Development Plan depicted development in three growth boundary areas. The proposed Distribution Center and associated parking/infrastructure should be located in one of the three growth boundaries and take into consideration the natural features of the site and minimize any increase in impervious area and removal of large areas of mature vegetation. Mitigation measures including tree replacement; maximizing building heights/minimizing building footprints; phased parking structures instead of surface parking; Transportation Management Plan; water quantity and quality measures above minimum requirements (to include Low Impact Development techniques versus SWM ponds); and stormwater/stream restoration should be considered.
- The development proposal should promote walkability and cluster buildings where possible. To encourage pedestrian movement throughout the site, sidewalks, lighting, shade, signage and wayfinding, green space and an overall aesthetically pleasing environment should be considered, which will also mitigate environmental and transportation impacts. A pedestrian circulation plan should be included.
- Does the proposed Distribution Center need to be located on the west side of the creek? It was the County's understanding the Army would prioritize development east of the creek first.
- Impacts to Resource Protection Areas, floodplains, wetlands, and rare, threatened, and endangered species should be avoided or minimized to the greatest extent feasible.
- Will the building obtain LEED certification and if so, at what level? Fairfax County projects are encouraged to obtain LEED Gold along with the installation of solar arrays and electric vehicle charging stations and provide an on site renewable energy component. The Fairfax County Board of Supervisors also has policies on energy performance targets; Greenhouse Gas emissions; and Net Zero Energy for our own buildings that perhaps the Army could consider.
- Any access at Rolling Road should be restricted to emergency only and any existing pedestrian networks in the area maintained.
- Any undisturbed and unsurveyed areas that are planned for development should undergo a Phase I archaeological survey. If potentially significant sites are found, it is recommended the Army undergo Phase II archaeological testing to determine Fairfax County significance and/or eligibility for inclusion onto the National Register of Historic Places. If sites are found to be significant or eligible, avoidance or Phase III data recovery is recommended.

Fairfax County has provided these comments to provide early input on the proposed action to be considered in the forthcoming EA. These comments are subject to change based on the County's formal review of the forthcoming EA and represent staff analysis and do not necessarily reflect the opinion of the Fairfax County Board of Supervisors.

Thank you, Kelly Atkinson

Kelly M. Atkinson, AICP (she/her/hers) Branch Chief, Environment and Development Review Branch Fairfax County Department of Planning and Development 12055 Government Center Parkway, 7th Floor Fairfax, VA 22035 (703) 324-1380 (Main) (571) 595-4238 (Mobile)

Note: My working hours may not be the same as your working hours. Please do not feel obligated to reply outside of your current work schedule.

From: FBNA <<u>FBNA@usace.army.mil</u>>
Sent: Wednesday, April 13, 2022 5:13 PM
Subject: FBNA Distribution Center Request for Early Input Notice

All Interested Parties:

The U.S. Army Garrison, Fort Belvoir, Virginia is preparing an Environmental Assessment (EA) for the construction and operation of a distribution center at the Fort Belvoir North Area (FBNA) in Springfield, Virginia, pursuant to the National Environmental Policy Act (NEPA) of 1969 (42 United States Code Section 4321 *et seq.*), the Council on Environmental Quality (CEQ) regulations that implement NEPA (40 Code of Federal Regulations [CFR] 1500-1508), and 32 CFR Part 651, *Environmental Analysis of Army Actions.* An EA is used as a planning document to assess environmental impacts, evaluate their significance, develop alternatives and mitigation measures, and allow for agency and public participation (32 CFR 651.20).

The EA is being prepared to evaluate the environmental impacts associated with the Proposed Action to build and operate a distribution center at FBNA. The project will modernize logistical operations and address safety, security, and operational concerns specific to the warehouse and its administrative functions. The project is needed to support the delivery and receipt of materials within and across the Washington Metropolitan Area, requiring a site within the National Capital

Region to achieve distribution efficiencies.

In accordance with 40 CFR 1500-1508, the Army invites you to provide early input on the Proposed Action to be considered in our analysis of each alternative in the forthcoming EA. This notice is being distributed to organizations and the public that may have an interest in the project. Information on the Proposed Action found the project can be on website at https://www.nab.usace.army.mil/FBNA/. Comments on the Proposed Action can be submitted through the project website or via email to <u>FBNA@usace.army.mil</u>. Once the draft EA is completed, organizations and the public will have an opportunity to review the document and provide comments during a 30-day public review period.

We appreciate your attention to this matter. Early input will be accepted for a period of 15 days, beginning on the date of this notice. Should you require any additional information or have any questions, please contact the Fort Belvoir Directorate of Public Works-Environmental Division (DPW-ED) via phone at (703) 806-3193 or (703) 806-0020, during normal working business hours, Monday through Friday, 8:00 a.m. to 4:00 p.m.

County of Fairfax, Virginia

To protect and enrich the quality of life for the people, neighborhoods and diverse communities of Fairfax County

July 30, 2021

Stephanie Free National Capital Planning Commission 401 9th Street NW, Suite 500 Washington, DC 20004

RE: NCPC Project Referral - MP020A - Fort Belvoir North Post Area Development Plan

Dear Stephanie Free:

Thank you for the opportunity to comment on the draft environmental assessment (EA) for Fort Belvoir North Post Area Development Plan, located at the northwest quadrant of Interstate 95 and Fairfax County Parkway. The plan proposes to establish the development framework for functions of the Fort Belvoir North Area (FBNA), a non-contiguous 804-acre parcel, located north of the main installation of Fort Belvoir and separated to the west by Interstate 95, in Springfield, Virginia. Fairfax County understands that three alternatives for the site were reviewed and range in intensity from minimal improvements of only planned projects to maximum capacity based on the remainder of land available; the maximum capacity alternative is the preferred alternative according to the FBNA stakeholders. The Department of Planning and Development (DPD), in collaboration with the Fairfax County Department of Transportation (FCDOT) and Fairfax County Park Authority (FCPA) has reviewed the abovementioned draft environmental assessment and provides the comments below.

COORDINATION WITH OTHER COUNTY AGENCIES

Transportation Impacts

FCDOT staff did not have any specific comments regarding this proposal as the site has good highway access via Interstate 95 and the Fairfax County Parkway. Staff did want to make Fort Belvoir aware of an ongoing study of the Fairfax County/Franconia-Springfield Parkways. There are no recommendations yet; however, the following questions are being considered, which could impact access to Fort Belvoir North Area:

- The degree to which existing intersections should be considered for conversion to interchanges or under/overpasses;
- How transit should be integrated into the corridor;
- Whether tolling and or HOV lanes on the Parkways should be planned; and
- Bicycle/pedestrian mobility.

Department of Planning and Development Planning Division 12055 Government Center Parkway, Suite 730 Fairfax, Virginia 22035-5507 Phone 703-324-1380 Fax 703-653-9447 www.fairfaxcounty.gov/planning-development

More information can be found at: <u>Fairfax County & Franconia-Springfield Parkways</u> <u>Alternatives Analysis and Long Term Planning Study | Transportation.</u>

Finally, FCDOT notes that Fairfax Connector Routes 340 and 341 began in 2017 and directly linked the FBNA to the Franconia Metrorail / VRE station. Both routes had low ridership pre-COVID and FCDOT is currently in the process of working with Fort Belvoir to rectify this situation. More information on the Fairfax Connector routes can be found at: Fairfax Connector Routes 340 and 341 (fairfaxcounty.gov).

Recreational and Heritage Resources

FCPA staff offered comments regarding the inclusion of a stream valley trail; request to perform a survey of rare, threatened, and endangered bat species; a request that a pedestrian circulation plan be included in the draft EA for evaluation; and requests to review all future documents related to the Accotink Stream Valley Park and Rolling Woods School site at the earliest opportunity.

Staff also recommends that any undisturbed and unsurveyed areas that are planned for development undergo a Phase I archaeological survey. If potentially significant sites are found, it is recommended they undergo Phase II archaeological testing to determine Fairfax County significance and/or eligibility for inclusion onto the National Register of Historic Places. FCPA comments are included in attachment to the letter. If sites are found to be significant or eligible, avoidance or Phase III data recovery is recommended.

ENVIRONMENTAL ASSESSMENT

The sections listed below include an overview of the applicable Comprehensive Plan policies and potential impacts within the project study area.

Water Resources Protection and Stormwater Management/Best Management Practices

The Environment Element of the Comprehensive Plan Policy Plan states that the protection and restoration of the ecological integrity of streams is expected in Fairfax County. In order to minimize the impacts that new development and redevelopment projects may have on county streams, the Comprehensive Plan encourages the protection of stream channels, buffer areas along stream channels, and restoration of degraded stream channels and riparian buffer areas. (Fairfax County Comprehensive Plan, 2019 Edition, Policy Plan, Environment, Amended through 12-3-2019, Pages 7-9).

New development and redevelopment are also expected to result in high quality site design, pursue use of low impact development (LID) techniques and "pursue commitments to reduce stormwater runoff volumes and peak flows, to increase groundwater recharge, and to increase preservation of undisturbed areas." Some or all of the following practices should be considered in order to minimize the impacts that new development and redevelopment projects may have on the county's streams:

- "Minimize the amount of impervious surface created ...
- Site buildings to minimize impervious cover ...
- Where feasible, convey drainage from impervious areas into pervious areas ...
- Encourage cluster development ...
- Encourage the preservation of wooded areas and steep slopes adjacent to stream valley EQC areas ...
- Where appropriate, use protective easements in areas outside of private residential lots as a mechanism to protect wooded areas and steep slopes.
- Encourage the use of open ditch road sections ...
- Encourage the use of innovative BMPs and infiltration techniques of stormwater management ...
- Apply nonstructural best management practices and bioengineering practices ...
- Encourage shared parking ...
- Encourage the use of pervious parking surfaces in low-use parking areas ...
- Maximize the use of infiltration landscaping within streetscapes consistent with county and state requirements."

(Fairfax County Comprehensive Plan, 2019 Edition, Policy Plan, Environment, Amended through 12-3-2019, Pages 7-9).

The proposed project will add a significant amount of impervious cover to the site under the maximum development potential alternative. With a greater amount of impervious surface, more runoff and pollutants reach the county streams. Higher levels of runoff from increased imperviousness accelerate stream channel erosion causing increased sedimentation. Deicing salt applied to roads and parking lots is the primary source of chloride in streams. The above listed practices would be applicable to the study and design of the development plan and should be incorporated to the greatest extent feasible.

County policies also state that stormwater design for all stormwater facilities should be closely coordinated with county staff to avoid degradation of impacted streams. The area development plan improvements should provide stormwater quality and quantity controls above the minimum requirements to minimize impacts to adjacent streams and, at a minimum, meet the water quantity detention requirements in Chapter 124 of the Fairfax County Code. County policies state that the county will maintain a best management practices (BMP) program for water quality and will ensure that new development and redevelopment complies with the county's best management practice (BMP) requirements. BMP requirements are to be updated as newer, more effective strategies become available.

Staff also recommends the avoidance of significant ecological resources to the maximum extent feasible; incorporation of linear stormwater controls into the facility designs to address stormwater requirements while minimizing the disturbance of ecological resources and open spaces; incorporation of ecological enhancements into any pond design to replace the ecological functionality of disturbed areas; integration of stream protection measures; demonstration that there will be no adverse impacts to downstream waterways, infrastructure, or property; assessment of the cumulative impact of multiple outfalls directed into a stream in the same general vicinity; incorporation of natural channel design, where applicable; incorporation of constructed wetlands as an alternative to the proposed pond designs; consideration of the retrofitting of existing wet ponds to meet stormwater requirements; adherence to current pollutant removal criteria for any dry ponds; restoration and monitoring of disturbed areas; and management of invasives to be considered in the project study.

Resource Protection Area (RPA), Floodplain and Environmental Quality Corridor (EQC)

Floodplain, RPA, and areas that qualify for designation as EQC exist on the site as shown in Attachment A, an environmental map of the Fort Belvoir North Area prepared by the Department of Planning and Development. Fairfax County recognizes that the Department of the Army is not subject to the provisions of the Chesapeake Bay Preservation Ordinance (CBPO) or County policies. However, Fairfax County continues to encourage the Army to meet the County's CBPO as described in Chapter 118 of the County Code, including conformance with the requirements for areas designated as RPAs and Resource Management Areas. Fairfax County also encourages the Army to minimize any impact to 100-year floodplains and/or wetlands, to the greatest extent feasible. Any mitigation/compensation of wetlands should occur as close to the area of impact as possible. Fairfax County encourages these areas to be protected consistent with county policy and regulations. EQCs as defined in Policy Plan Element of Fairfax County's Comprehensive Plan should also be considered for preservation. Land area that includes all 100-year floodplains, areas of 15% or greater slopes adjacent to the floodplain, and all wetlands qualify as designation of Environmental Quality Corridors and should be considered. This designation would protect and preserve habitat

quality, protect streams, reduce pollutants from entering the water, and provide a connected segment of open space to facilitate the movement of wildlife in the area as well as with the Accotink Creed EQC to the north of the property.

(Fairfax County Comprehensive Plan, 2019 Edition, Policy Plan, Environment, Amended through 12-3-2019, Pages 15-18).

<u>Soils</u>

The Comprehensive Plan encourages new development to either avoids problem soil areas, or implement appropriate engineering measures to protect existing and new structures from unstable soils. (Fairfax County Comprehensive Plan, 2019 Edition, Policy Plan, Environment, Amended through 12-3-2019, Page 13).

This property contains Marine Clay and problem class soils surrounding Accotink Creek and its tributaries. Staff recommends the Army cluster development away from problem class soils and complete a geotechnical study for the proposed development in the areas that exhibit problem class soils.

Forest Resources Policies and Impacts

The Comprehensive Plan anticipates that new development will include an urban forestry program and be designed in a manner that retains and restores meaningful amounts of tree cover, consistent with planned land use and good silvicultural practices. Good quality vegetation should be preserved and enhanced and lost vegetation restored through replanting. (Fairfax County Comprehensive Plan, 2019 Edition, Policy Plan, Environment, Amended through 12-3-2019, Pages 17-18).

The project has the potential to disturb a large amount of mature tree cover. Tree planting should be incorporated extensively into the project design for all disturbed areas. In order to ensure the viability of the proposed plantings, staff recommends tree protection, to include adequate supervision during construction, to ensure that tree protection measures are implemented as planned. Additionally, staff recommends that all development plans avoid the following: significant changes to elevations (both "cut" and "fill" operations); changes to water flow; and excavation within the critical root zones of all trees to be protected. Additionally, staff recommends planting schemes featuring native and non-invasive trees, shrubs, perennial grasses and grass-like plants, and forbs for each planting area in the project design. For all new planting areas and for areas in which existing pavement is to be removed, staff recommends soil rebuilding in the project design, which would help ensure the viability of the proposed plantings.

Together, these measures would minimize impacts to ecological resources, increase the viability of the existing tree cover, increase the habitat value of the project, promote water infiltration, improve air quality and provide shade, consistent with the intent of the Comprehensive Plan.

Green Building

Fairfax County encourages commercial building development to incorporate green building measures into the design of all projects. Example green building measures can be derived from the U.S. Green Building Council's Leadership in Energy and Environmental Design for New Construction [LEED-NC®] or the U.S. Green Building Council's Leadership in Energy and Environmental Design for Core and Shell [LEED-CS®] or an equivalent program with independent third-party verification. Additional examples of measures that can be considered for the interior design are: Energy STAR fixtures, low flush toilets, high efficiency light, recycling of non-hazardous renovation materials, etc. Fairfax County also encourages the incorporation of electric vehicle charging into development proposals. (Fairfax County Comprehensive Plan, 2019 Edition, Policy Plan, Environment, Amended through 12-3-2019, Pages 20-22).

Thank you again for the opportunity to comment on this proposal. If you have any questions about the comments, please contact Ellen Huber with the Department of Planning and Development at <u>Ellen.Huber@fairfaxcounty.gov</u> or 703-324-1364.

Sincerely,

Lanna H ODonnell

Leanna H. O'Donnell, Director, Planning Division Department of Planning and Development

LHO:EKH

Attachment A: Environmental Map of the Fort Belvoir North Area Attachment B: Fairfax County Park Authority Memorandum

cc: Board of Supervisors
 Bryan Hill, County Executive
 Rachel Flynn, Deputy County Executive
 Barbara Byron, Director, DPD
 Kelly M. Atkinson, Chief, Environment and Development Review Branch, DPD

County of Fairfax, Virginia

To protect and enrich the quality of life for the people, neighborhoods and diverse communities of Fairfax County

December 20, 2021

Stephanie Free National Capital Planning Commission 401 9th Street NW, Suite 500 Washington, DC 20004

RE: NCPC Project Referral - MP020A - Fort Belvoir North Post Area Development Plan, Dated December 2021

Dear Stephanie Free:

Thank you for the opportunity to comment on the revised Fort Belvoir North Area Development Plan (FBNADP), dated December 2021. Fort Belvoir North Area (FBNA) is located at the northwest quadrant of Interstate 95 and the Fairfax County Parkway. The FBNADP proposes to establish the development framework for functions of the FBNA, a noncontiguous 804-acre parcel, located north of the main installation of Fort Belvoir.

In June 2021, Fairfax County provided you with comments on three development alternatives planned for the site which ranged in intensity from minimal improvements of only planned projects to maximum capacity based on the remainder of land available; the maximum capacity alternative was the preferred alternative according to the FBNA stakeholders. The maximum capacity alternative did not take into consideration the natural features of the site and would result in a significant increase in impervious area on site, as well as the removal of large areas of mature vegetation. Fairfax County identified several concerns and recommended mitigation measures that could be implemented in the final design to minimize the impact of the proposed development on environmentally sensitive areas (see Attachment 1). While some of those concerns have been better addressed with the most recent submission, Fairfax County continues to support our previous comments in Attachment 1, in addition to these additional comments on the current submission.

Growth Boundaries

In response to comments received on the June 2021 plan, Fort Belvoir conducted additional quantitative analyses with affected stakeholders to identify potential development areas within FBNA. This included an analysis of areas of the site that were prohibited for development due to cost or jurisdictional requirements; extent of mitigation required; soils; areas of existing

Department of Planning and Development Planning Division 12055 Government Center Parkway, Suite 730 Fairfax, Virginia 22035-5507 Phone 703-324-1380 Fax 703-653-9447 www.fairfaxcounty.gov/planning-development

development; and areas of existing vegetation, some of which would require additional mitigation if impacted. Additionally, consideration was made to ensure any future development would not conflict with the existing National Geospatial-Intelligence Agency (NGA) located on the eastern portion of the site. These constraints were then used to identify three growth boundaries that balance Fort Belvoir's expanded mission capacity while taking into consideration the need for a secure campus on the western portion of the site and preservation of natural features. The three growth boundaries are shown in Figure 1 and total 238 acres. As stated in the current plan, the intent of the growth boundaries is to establish a dense walkable campus in areas of prior disturbance to the extent possible, with a priority on the eastern portion of the site. As proposed, the area of development has been reduced by approximately 51 acres on the western portion of the site, including one area entirely that was located between the two western growth boundaries. The revised growth boundaries result in the preservation of approximately 90 additional acres of vegetation. While the plan still proposes 90 acres of tree removal, this has been reduced from 154 acres proposed with the June 2021 submission. Fairfax County appreciates the applicant's commitment to minimize the areas of development and minimize tree removal and disturbance by focusing development within three growth boundaries, which is consistent with County policies.

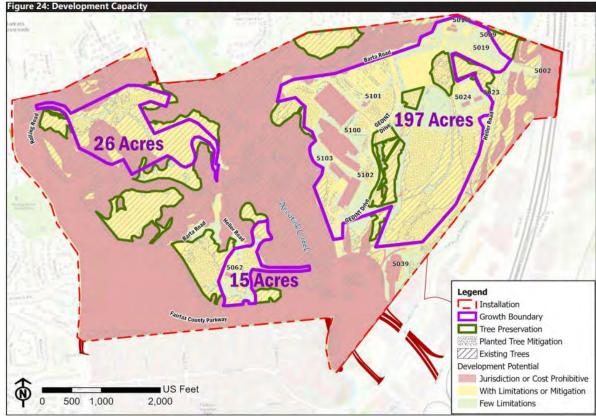


Figure 1: Development Capacity, Source: FBNADP December 2021, Page 53

Illustrative Plan

Figure 2 below depicts the proposed Illustrative Plan. The most significant change between the June and December plans is the removal of the proposed buildings on the western portion of the property. It is Fairfax County's understanding that any near-term development would first be concentrated on the eastern portion of the property, in the vicinity of the NGA, assuming there are no security concerns. Additionally, Fairfax County understands that currently, there are no end users for development on the western portion of the site; therefore, the depiction of buildings, parking areas and roads is premature and would be subject to further review by NCPC, as well as Fairfax County, at such time a user is identified. However, any development potential would be limited to the growth boundary. Building heights for future buildings have also been increased from one to three stories to three to eight stories to minimize building footprint. The current plan depicts a future Parking Structure (identified as "E" in Figure 2) to replace an existing overflow, surface parking lot. This will ensure adequate parking can be provided in a smaller footprint and result in less land disturbance. The current plan promotes density and multi-story buildings whenever feasible, which promotes walkability. To encourage pedestrian movement throughout the site, sidewalks, lighting, shade, signage and wayfinding, green space and an overall aesthetically pleasing environment are now proposed, which will also mitigate environmental and transportation impacts. Fairfax County finds this an improvement over the previous submission and consistent with County policies that seek to cluster development in pedestrian friendly developments.

Figure 2: Development Capacity, Source: FBNADP December 2021, Page 10

Forest Resources, Water Resources and Sustainability

While Fort Belvoir has made efforts to focus growth in designated areas, preserve more vegetation, and minimize tree removal, the current plan continues to result in the potential for significant additions of impervious area and impacts to natural features. Therefore, the current plan now proposes compensation measures to include:

- 2:1 tree replanting on- or off-Post;
- Installation of additional solar/PV cells and/or wind power generation in the project, or elsewhere on-Post;
- Stream restoration along the tributaries affecting Fort Belvoir, both on- or off-Post; and
- Stormwater restoration and mitigation measures throughout Post.

Fairfax County supports these mitigation measures as they are consistent with the Environment Element of the Policy Plan that recommends the restoration of meaningful amounts of tree cover and the protection and restoration of the ecological integrity of streams. Fairfax County

recommends any tree replanting be prioritized at a ratio of 2:1 and located on-Post to the greatest extent feasible to provide a more direct benefit adjacent to disturbed areas. If the full replanting cannot be accommodated on-Post, Fairfax County would support a 2:1 tree planting in areas within the County near the site. Alternatives could include contributions into a County Tree Preservation and Planting Fund to support the County's replanting efforts in the South County area of Fairfax County, or a joint partnership between the County and FBNA to identify areas in South County suitable for replanting by FBNA.

Fairfax County supports Fort Belvoir's efforts to complete steam restoration on site. The Environment Element of the Policy Plan states that the protection and restoration of the ecological integrity of streams is expected in Fairfax County. In order to minimize the impacts that new development and redevelopment projects may have on county streams, the Comprehensive Plan encourages the protection of stream channels, buffer areas along stream channels, and commitments to the restoration of degraded stream channels and riparian buffer areas. In addition, Fairfax County continues to recommend water quantity and quality measures be provided above any minimum requirements to minimize impact to adjacent streams. Finally, Fairfax County appreciates the removal of several stormwater management ponds and replacement with several low impact development (LID) measures for water quantity and quality. This is consistent with County policies that expects new development and redevelopment to result in high quality site design using LID techniques.

Fairfax County encourages commercial building development to incorporate green building measures into the design of all projects. Example green building measures can be derived from the U.S. Green Building Council's Leadership in Energy and Environmental Design for New Construction [LEED-NC®] or the U.S. Green Building Council's Leadership in Energy and Environmental Design for Core and Shell [LEED-CS®] or an equivalent program with independent third-party verification. Additionally, Fairfax County expects new County facilities to be designed and constructed to obtain LEED-Gold certification; incorporate solar and electric-vehicle readiness features; provide an on-site renewable energy generation component; obtain energy performance improvement; reduce greenhouse gas emissions; and ultimately achieve net zero energy (for projects designed in FY 2031 or later). Fairfax County understands that any new facilities constructed with this plan have been designed to achieve LEED-Silver; however, the NGA building has obtained LEED-Gold certification. The County recommends any new facilities on site also obtain LEED-Gold certification, which is consistent with the County's policy for new County facilities. Fairfax County also continues to recommend a minimum of 2-percent of any parking spaces on site be equipped with Level-2, universal electric vehicle charging facilities, fully wired and functional, consistent with County policies.

Finally, the current plan notes that any development on the western portion of the site include environmentally responsible development opportunities, to include solar arrays on roofs to

enhance long-term benefits of renewable energy usage. This is consistent with the policy regarding renewable energy production for new County facilities.

Transportation

The circulation plan remains largely unchanged from the June 2021 submission, except for one change which was made to address a comment made by a Fairfax County resident. The previous proposal depicted a new road that would provide a connection from Rolling Road to Barta Road on the western portion of the property. This access could impact the existing, offsite pedestrian networks in the area. In response, this access at Rolling Road has been restricted to emergency only and any existing pedestrian networks in the area would be maintained. Fairfax County appreciates Fort Belvoir's response to this concern.

Fort Belvoir is required to maintain a Transportation Management Plan (TMP) to inform employees on transportation options for travelling to and from FBNA. Strategies include the use of structured parking at a ratio of 1:1.5; phased structured parking to ensure parking demands are constantly assessed; maximize structured parking over surface lots; secure and unsecured parking; single-occupancy vehicle reduction techniques; and annual review of the TMP. Fairfax County recommends similar measures for large redevelopment proposals in the County.

The June 2021 plan identified the use of parking maximums as an effective method of transportation demand management (TDM) for dense urban areas. The plan provided a range of parking ratios based on various sources applicable to similar sites. It was noted that while these ratios may be appropriate for other projects, they could not be achieved for FBNA. Reasons include not being adequately served by public transportation; unique security requirements; and a specialized workforce who sees adequate parking as a benefit. For these reasons, a 90% factor was used to determine parking requirements.

The December 2021 restates this concern; however, now offers additional suggestions to better meet the TDM requirements based on ten years of experience provided by the NGA and the TDM strategies implemented with that project, which include Ride-Sharing, Carpool, Vanpool, Guaranteed Ride Home, Ridematching Services, Ride-Sharing Marketing, Alternative Work Schedules, Telework (when applicable), Transit Subsidy, Bicycle/ Walking, and Mass Transit Education programs. Based on FBNA's experience with the NGA site, the current plan now proposes a 67% factor and the parking ratios are more aligned with the TMP.

Summary

Fairfax County appreciates the opportunity to comment on the revised Fort Belvoir North Area Development Plan dated December 2021. Overall, Fairfax County finds the proposed revisions an improvement over the June 2021 submission. The current plan more adequately balances the needs of the mission while protecting environmental resources. The identification of growth boundaries clearly defines where future development is expected, and the proposed mitigation will help address some of the proposed impacts. Fairfax County continues to recommend the applicant refine the proposed development as final plans progress and requests to review any revised plans developed for the site.

Thank you again for the opportunity to comment on this proposal. If you have any questions about the comments, please contact Kelly Atkinson with the Department of Planning and Development at Kelly. Atkinson@fairfaxcounty.gov or 703-324-1259.

Sincerely,

Leanna H ODonnell

Leanna H. O'Donnell, Director, Planning Division Department of Planning and Development

LHO:KMA

Attachment 1: NCPC Project Referral - MP020A - Fort Belvoir North Post Area Development Plan, Letter Dated July 30, 2021

cc: Board of Supervisors Bryan Hill, County Executive Rachel Flynn, Deputy County Executive Barbara Byron, Director, DPD Vance Zavela, Partnership Developer, Fort Belvoir

From: B	Burke, Thomas W
To: F	BNA
Cc: <u>A</u>	<u>tkinson, Kelly; Hermann, Jeffrey C.; Garcia, Michael W; Felschow, Michael; Kang, Hejun</u>
Subject: [l	URL Verdict: Neutral][Non-DoD Source] RE: FBNA Distribution Center Request for Early Input Notice
Date: T	hursday, April 28, 2022 4:14:37 PM
Attachments: in	mage001.png

Good morning,

Following up on Kelly Atkinson's comments from April 19, 2022, Fairfax County Department of Transportation just wanted to add a couple additional transportation-related notes, pertaining to the proposed development at Fort Belvoir North Area.

- Fairfax County has completed its Fairfax County & Franconia-Springfield Parkways Alternatives Analysis & Long-Term Planning Study. We are currently in the process of incorporating new long-term recommendations into the Comprehensive Plan. Public hearings for this Comprehensive Plan Amendment are anticipated for this Summer.
 - We are recommending that the Fairfax County Parkway be widened from 4 to 6 general purpose lanes, between the Barta Road interchange and John J Kingman Road.
 - We are recommending continuous, connected, multi-use trails on both sides of the Parkway.
 - We are recommending interchange modifications at Fairfax County Parkway and I-95.

Note that these are long-range, high-level, planning recommendations that will require additional outreach and analysis before concepts, alignments and cross sections are ultimately designed, engineered and constructed.

- Please note that Fairfax Connector is currently in the process of developing its Transit Strategic Plan (TSP). This is an ongoing effort, with draft recommendations. Final recommendations will need to be cost constrained and have yet to be confirmed.
 - Project website: <u>https://www.fairfaxcounty.gov/connector/tsp</u>.
 - Fairfax Connector Routes that serve the FBNA and nearby Saratoga Park & Ride, including Routes 340, 341, 393 and 394, are under consideration for potential changes.
 - Route 341 will remain the same; The team is currently working on several service options for Route 340, coordinating with agencies in the Fort Belvoir North Area.
 - Other routes nearby are also being assessed.
 - Route 371, which provides access to Franconia-Springfield VRE/Metrorail and Lorton VRE Stations, running on Rolling Road and Fullerton Road, will improve the rush-hour frequency to 15 mins. The improvements will be funded through the recently awarded Northern Virginia Transportation Commission (NVTC) grant.
 - New routes are also under consideration.
 - New Route 990 is under consideration that would connect the Herndon

Metrorail Station to FBNA via the Fairfax County Parkway, and on to the Franconia-Springfield VRE/Metrorail Station. It would potentially operate on weekdays, from 6:00am to 7:00pm with 20 minute frequency during the peak and 30 minute off-peak.

Final recommendations for the TSP will be submitted to the Board of Supervisors later this year or early next year for approval; Implementation for any service change will depend on future funding and approval of the Board.

Please let us know if you have any additional questions.

-Tom

Thomas W. Burke, P.E., AICP

Senior Transportation Planner IV Transportation Planning Section

Fairfax County Department of Transportation 4050 Legato Road, Suite 400 Fairfax, VA 22033 (703) 877-5600 (Main) (703) 877-5681 (Direct) (703) 877-5697 (Fax)

www.FairfaxCounty.gov/Transportation

From: Atkinson, Kelly
Sent: Tuesday, April 19, 2022 3:27 PM
To: FBNA@usace.army.mil
Subject: FW: FBNA Distribution Center Request for Early Input Notice

Good afternoon,

Please find below Fairfax County's early input comments on the Draft EA. Fairfax County requests the opportunity to comment on the Draft EA once published.

• Fairfax County previously commented on the FBNA Area Development Plan Master Plan at the request of NCPC (please see attached letters). In the most recent submission reviewed (December 2021), the FBNA Area Development Plan depicted development in three growth boundary areas. The proposed Distribution Center and associated parking/infrastructure should be located in one of the three growth boundaries and take into consideration the natural features of the site and minimize any increase in impervious area and removal of large areas of mature vegetation. Mitigation measures including tree replacement; maximizing building heights/minimizing building footprints; phased parking structures instead of surface parking; Transportation Management Plan; water quantity and quality measures above

minimum requirements (to include Low Impact Development techniques versus SWM ponds); and stormwater/stream restoration should be considered.

- The development proposal should promote walkability and cluster buildings where possible. To encourage pedestrian movement throughout the site, sidewalks, lighting, shade, signage and wayfinding, green space and an overall aesthetically pleasing environment should be considered, which will also mitigate environmental and transportation impacts. A pedestrian circulation plan should be included.
- Does the proposed Distribution Center need to be located on the west side of the creek? It was the County's understanding the Army would prioritize development east of the creek first.
- Impacts to Resource Protection Areas, floodplains, wetlands, and rare, threatened, and endangered species should be avoided or minimized to the greatest extent feasible.
- Will the building obtain LEED certification and if so, at what level? Fairfax County projects are encouraged to obtain LEED Gold along with the installation of solar arrays and electric vehicle charging stations and provide an on site renewable energy component. The Fairfax County Board of Supervisors also has policies on energy performance targets; Greenhouse Gas emissions; and Net Zero Energy for our own buildings that perhaps the Army could consider.
- Any access at Rolling Road should be restricted to emergency only and any existing pedestrian networks in the area maintained.
- Any undisturbed and unsurveyed areas that are planned for development should undergo a Phase I archaeological survey. If potentially significant sites are found, it is recommended the Army undergo Phase II archaeological testing to determine Fairfax County significance and/or eligibility for inclusion onto the National Register of Historic Places. If sites are found to be significant or eligible, avoidance or Phase III data recovery is recommended.

Fairfax County has provided these comments to provide early input on the proposed action to be considered in the forthcoming EA. These comments are subject to change based on the County's formal review of the forthcoming EA and represent staff analysis and do not necessarily reflect the opinion of the Fairfax County Board of Supervisors.

Thank you, Kelly Atkinson

Kelly M. Atkinson, AICP (she/her/hers) Branch Chief, Environment and Development Review Branch Fairfax County Department of Planning and Development 12055 Government Center Parkway, 7th Floor Fairfax, VA 22035 (703) 324-1380 (Main) (571) 595-4238 (Mobile)

Note: My working hours may not be the same as your working hours. Please do not feel obligated to reply outside of your current work schedule.

From: FBNA <FBNA@usace.army.mil>
Sent: Wednesday, April 13, 2022 5:13 PM
Subject: FBNA Distribution Center Request for Early Input Notice

All Interested Parties:

The U.S. Army Garrison, Fort Belvoir, Virginia is preparing an Environmental Assessment (EA) for the construction and operation of a distribution center at the Fort Belvoir North Area (FBNA) in Springfield, Virginia, pursuant to the National Environmental Policy Act (NEPA) of 1969 (42 United States Code Section 4321 *et seq.*), the Council on Environmental Quality (CEQ) regulations that implement NEPA (40 Code of Federal Regulations [CFR] 1500-1508), and 32 CFR Part 651, *Environmental Analysis of Army Actions.* An EA is used as a planning document to assess environmental impacts, evaluate their significance, develop alternatives and mitigation measures, and allow for agency and public participation (32 CFR 651.20).

The EA is being prepared to evaluate the environmental impacts associated with the Proposed Action to build and operate a distribution center at FBNA. The project will modernize logistical operations and address safety, security, and operational concerns specific to the warehouse and its administrative functions. The project is needed to support the delivery and receipt of materials within and across the Washington Metropolitan Area, requiring a site within the National Capital Region to achieve distribution efficiencies.

In accordance with 40 CFR 1500-1508, the Army invites you to provide early input on the Proposed Action to be considered in our analysis of each alternative in the forthcoming EA. This notice is being distributed to organizations and the public that may have an interest in the project. Information on the Proposed Action can be found on the project website at https://www.nab.usace.army.mil/FBNA/. Comments on the Proposed Action can be submitted through the project website or via email to FBNA@usace.army.mil. Once the draft EA is completed, organizations and the public will have an opportunity to review the document and provide comments during a 30-day public review period.

We appreciate your attention to this matter. Early input will be accepted for a period of 15 days, beginning on the date of this notice. Should you require any additional information or have any questions, please contact the Fort Belvoir Directorate of Public Works-Environmental Division (DPW-ED) via phone at (703) 806-3193 or (703) 806-0020, during normal working business hours, Monday through Friday, 8:00 a.m. to 4:00 p.m.

IN REPLY REFER TO: NCPC FILE No. MP020A

MAY 2, 2022

Ms. Heather Cisar United States Army Corps of Engineers Baltimore District, Maryland 21203

Re: Fort Belvoir North Area Distribution Center Scoping (Early Input) Comments

Dear Ms. Cisar:

Thank you for the opportunity to offer early input as part of the Fort Belvoir North Area (FBNA) distribution center's environmental review process under the National Environmental Policy Act (NEPA). As the federal government's planning agency for the National Capital Region, NCPC has advisory review authority over the project under the National Capital Planning Act (40 U.S.C. §§ 8722 (b)(1)). Our comments are based on policies from the Federal Elements of the NCPC Comprehensive Plan and in follow-up to our previous FBNA Area Development Plan review. For your reference, you may access a videotape of the meeting through NCPC's website at <u>www.ncpc.gov/videos</u>, as well as the Commission Action in the Appendix of this letter, which provides guidance that applies to the distribution center project.

Fort Belvoir North Area Final Area Development Plan

NCPC recently approved of the distribution center use for Area D with the following applicable guidance:

- The distribution center is required to be located on previously disturbed land to the greatest extent possible;
- Renewable energy is a priority for future FBNA projects including the distribution center; and
- The forested western campus (Area D) is for potential development by missions that are not compatible with other campus core area (Area A) development.

As the initial project within Area D, the new distribution center's layout and orientation are critical, not only to maximize its potential passive solar energy gain and to minimize its use of undisturbed land, but the new development will influence other future on-site projects as well. Thus, the EA should assess a design that aligns with these objectives and consider more than one project footprint to ensure an optimal future layout. In addition, the Army Corps of Engineers (USACE) should minimize future on-site parking as much as possible to help FBNA eventually attain its overall long-term 1:2 parking goal.

Future Environmental Assessment

We understand the EA assumes the future project would encompass an area of approximately 525,000 square feet (consisting of a warehouse and administrative building) to accommodate an additional six hundred personnel, with enhanced security measures, and space for 640 personal vehicles and twelve trucks daily. The new center would support delivery and receipt of materials for FBNA and other federal campuses throughout the National Capital Region. As part of the EA process, we recommend the USACE analyze the following impact topic areas:

- Travel and parking characteristics on-site and in the surrounding area;
- Vehicular and pedestrian circulation, and site security;
- Views/visual quality in and around the site;
- Energy and potable water use;
- Total impervious surface area changes;
- Stormwater runoff volumes;
- Stream health, function, and water quality;
- 100 and 500-year floodplain impacts;
- Vegetation, tree canopy area, and number of on-site trees;
- Habitat and functions of natural resources; and
- Effects on historic properties and resources.

Finally, the EA should include all existing and planned unbuilt projects in its evaluation of the project's cumulative impacts as requested in our March 2022 Commission Action.

Project Review Process

We recommend early consultation with NCPC staff to review the project's concept design (10-20%) to ensure the project would meet Commission expectations. The concept design should include proposed road, development configurations, stormwater management areas, parking, and proposed tree removal/mitigation information to include:

- A survey of existing trees that identifies forest cover acreage, species, composition, age, condition, location, and areas of natural regrowth;
- Prioritized on- and off-site tree replanting areas prior to implementing other alternative environmental compensation measures;
- Alternative environmental compensation measures early in the design process to maximize feasibility of their implementation;
- Quantitative data that demonstrates the proposed alternative environmental compensation measures would equate to at least one of the benefits provided by the net acreage of trees removed (e.g., carbon sequestration, stormwater capture, etc.); and
- Any alternative environmental compensation measures in addition to applicable federal, state, and local regulations already required.

The USACE should anticipate two separate project submissions (Preliminary and Final) to our Commission when plans are at an adequate level of detail. Please consult our agency website at <u>www.ncpc.gov/review/guidelines</u> for more information about our submission guidelines. Finally,

Fairfax County during the NEPA process and later design stages. we encourage the USACE to continue to coordinate the new distribution center project with

We appreciate the opportunity to provide these staff comments and we look forward to reviewing the future draft EA and project submissions. If you have any questions, please contact Michael Weil at 240-575-0212, or <u>michael.weil@ncpc.gov</u>.

Sincerely,

Diane Sullivan

Diane Sullivan, Director Urban Design and Plan Review Division

Attached: Fort Belvoir North Area – Final Area Development Plan Commission Action (March 3, 2022)

Commission Action

March 3, 2022

PROJECT Fort Belvoir North Area Final Area Development Plan Fort Belvoir 7500 GEO International Drive Springfield, Virginia

SUBMITTED BY United States Department of Defense Department of the Army

REVIEW AUTHORITY Approval of Master Plans for use by the Commission per 40 U.S.C. § 8722(a) and (b)(1) NCPC FILE NUMBER MP020A

NCPC MAP FILE NUMBER 2205.10(05.00)45430

APPLICANT'S REQUEST Approval of final master plan

ACTION TAKEN Approved final master plan with comments

The Commission:

Notes the Fort Belvoir North Area (FBNA) master plan includes known future development, such as the Defense Intelligence Agency (DIA) Headquarters Annex, in addition to capacity planning with defined growth boundaries for possible future missions unknown at this time. Therefore;

Approves the following components of the Fort Belvoir North Area (FBNA) final master plan:

- The planning principles for determining the location of new missions;
- The defined growth boundaries for the Areas A and B;
- The location of the future DIA Headquarters, visitor's center, utility plant, and near-term DIA parking garage within the Area A growth boundary;
- The proposed mid-term fire station addition and Joint Intelligence Logistics Center (JILC) located in Area A and an undisclosed tenant facility located in Area B; and
- The proposed distribution center use within the growth boundary labeled Area D.

Defers review of the following until more is known about future development:

- The mid-term parking garage in Area A, and
- Additional development of Area D other than the distribution center.

Notes the following comments and future requirements regarding development; environmental impacts; renewable energy; and transportation.

Development Framework

Finds the Army responded to the Commission's comments on the draft master plan by reducing disturbance to undeveloped areas; defining tree preservation areas; increasing building heights;

eliminating new surface parking; and incorporating low impact development stormwater management techniques.

Notes the Army used a qualitative analysis to define future growth boundaries, which reduced the total developable land area from 289 acres in the draft master plan to 238 acres currently proposed.

Notes the final master plan proposes to prioritize development of the campus core and identifies the forested western campus as developable only for potential missions that are not compatible with missions in the campus core.

Requires the distribution center within Area D to be located on previously disturbed land to the greatest extent possible.

Requires the Army to seek early consultation with NCPC staff and include proposed road and development configurations for the respective growth boundaries with future site and building plan submissions.

Environmental Impacts

Finds that the development framework has improved and now preserves 90 more acres of trees compared to the draft submission. However, significant environmental impacts are still anticipated with full build-out of the plan.

Notes that in total, approximately 78 acres of potential tree removal is anticipated with full development of the growth area boundaries and there is limited space for additional planting onsite.

Notes that in the near-term, the Army has identified approximately four on-site acres of tree planting in addition to off-site stream restoration to mitigate impacts from the proposed DIA Headquarters and parking garage, which is generally consistent with the intent of NCPC's policies and will be further refined during project review.

Notes the Army has committed to the following alternative environmental compensation measures to mitigate tree loss as a result of future development at the FBNA:

- Evaluate locations off-site to replant trees at a 2:1 ratio;
- Consider solar and/or wind power generation installations on- and off-post;
- Implement stream restoration along tributaries affecting Fort Belvoir; and
- Integrate stormwater restoration and mitigation measures throughout the post.

Finds that additional detail is necessary in the project site and building plan submissions to determine if the alternative compensation measures proposed are comparable mitigation for the remaining amount of tree removal, and

Requires that for future project submissions the Army should:

- Prioritize on- and off-site tree replanting prior to implementing other alternative environmental compensation measures;
- Incorporate alternative environmental compensation measures early in the design process to maximize feasibility of their implementation;
- Provide quantitative data that demonstrates the proposed alternative environmental compensation measures will equate to at least one of the benefits provided by the net acreage of trees removed (e.g., carbon sequestration, stormwater capture, etc.); and
- Provide any alternative environmental compensation measures in addition to applicable federal, state, and local regulations already required.

Requests the National Environmental Policy Act (NEPA) process for each future project include existing and planned, unbuilt projects in the evaluation of cumulative impacts and includes NCPC in the NEPA scoping periods.

Renewable Energy

Notes the Department of Defense's (DoD) Climate Action Plan (CAP) creates a strategic framework to meet the directives of Executive Order (E.O.) 14008 and is also acting on requirements in several other E.O.s with a commitment to achieving carbon free electricity and net-zero installations.

Notes the final master plan indicates that solar panels may be installed on parking structure rooftops, existing surface parking lots, covered walkways, and new facilities evaluated through the Leadership in Energy and Environmental Design (LEED) design process.

Recommends the FBNA prioritize LEED's renewable energy credit points to achieve green building certification of its facilities.

Finds that additional effort is needed for individual projects to meet the larger goals of the DoD's CAP and goals related to carbon free electricity and net-zero installations at the FBNA.

Requests renewable energy is a priority for future FBNA projects including the DIA Headquarters and the future distribution center.

Transportation Near-term

Notes the proposed FBNA Transportation Management Plan (TMP) incorporates the NGA Transportation Demand Management (TDM) strategies, as previously requested by the Commission.

Notes the original NGA Headquarters TMP was approved with a parking ratio of 1:1.5 in 2015. The current parking ratio is approximately 1:1.7, due to an increase in employees and visitor events at the campus.

Notes NCPC revised the parking ratio for this area in 2017 to 1:2 as part of the 2017 National Capital Region Federal Parking Study.

Notes the proposed DIA Headquarters garage will provide 1,547 spaces to serve NGA employees, DIA employees, and visitors. This garage will maintain the current parking ratio of 1:1.7 for the campus core.

Finds that compared to other installations of similar distance to Metro, NGA has done well in meeting NCPC's earlier parking ratio goal and has implemented many of the TDM strategies outlined in the existing NGA Headquarters TMP.

Finds there are a number of unique constraints that support a deviation from the 1:2 ratio at this time, including:

- Near-zero ability to telework among all employees because of the highest security requirements, and
- Overlapping shifts.

Finds the 1,380 parking spaces dedicated for an anticipated 2,650 visitor population is supported by 120 special events per month that occur at the conference center and NGA College.

Notes that if additional funding becomes available, the Army would like to increase the number of spaces in the DIA garage so that the near-term employee parking ratio for the campus core would decrease to a 1:1.5 ratio.

Notes the Commission is only approving the DIA garage sized for a 1:1.7 campus parking ratio at this time.

Finds more specific TMP data (see below) would be needed for the Commission to consider a decrease to the current campus parking ratio. If the Commission were to find a decrease to the near-term parking ratio justified, mid and long-term parking projects would need to bring the overall campus to a 1:2 parking ratio.

Transportation Mid and Long-term

Notes that the applicant intends to prepare a more robust TMP for the FBNA. Additional time is necessary to seek funding, coordinate with various missions, understand post-pandemic transportation, and realize the potential campus population associated with future development.

Notes the Army has stated they will work towards a 1:2 parking ratio goal over the long-term but the above constraints will prevent near and mid-term projects from reaching this goal.

Notes the mid-term garage will be sized in accordance with a future TMP to be reviewed by the Commission.

Requests the applicant return to the Commission in approximately two years, or when early planning begins for the next master plan project after the DIA Headquarters, with an update to the FBNA TMP. The update should identify:

- Specific mode split data;
- Existing parking utilization rates;
- Additional information about the need for, and amount of, overlapping shifts;
- TDM strategies and steps necessary to incrementally improve the campus parking ratio and an analysis of action items necessary to achieve a long-term parking ratio of 1:2;
- Outcome of efforts to reinstate the FBNA shuttle service between the Franconia-Springfield Metro Station and the campus; and
- Capabilities to bus visitors to/from the FBNA during special events, such as conferences.

Additional Coordination

Requests the Army continue coordination with Fairfax County as individual project implementation proceeds. Coordination should include, but not be limited to, the NEPA scoping process.

03/04/2022 ilia Koster

Julía A. Koster Secretary to the National Capital Planning Commission

From:	<u>Traver, Carrie</u>
To:	FBNA
Cc:	Nevshehirlian, Stepan
Subject:	[URL Verdict: Neutral][Non-DoD Source] Environmental Assessment for the Construction and Operation of a Distribution Center at the Fort Belvoir North Area
Date:	Wednesday, May 4, 2022 6:31:02 PM

Thank you for providing the notice that the U.S. Army Garrison, Fort Belvoir is preparing an Environmental Assessment (EA) for the construction and operation of a distribution center at the Fort Belvoir North Area (FBNA). In response, the Environmental Protection Agency (EPA) has recommendations for your consideration in the development of the EA in compliance with the National Environmental Policy Act (NEPA) of 1969, the CEQ regulations implementing NEPA (40 CFR 1500-1508) and Section 309 of the Clean Air Act.

Purpose and Need, Alternatives

The Request for Early Input indicates that the project is needed to support the delivery and receipt of materials within and across the Washington Metropolitan Area and will "modernize logistical operations and address safety, security, and operational concerns." EPA recommends that the EA clearly identify the need for the project.

- The Purpose and Need section in the EA should describe the underlying problems or deficiencies and identify how the Proposed Action will resolve these issues.
- The purpose and need should inform the discussion of reasonable alternatives. We recommend discussing alternatives, including alternative sites at FBNA or other locations in the Washington Metropolitan Area that may have been evaluated, and other functional alternatives (e.g., multiple buildings, using existing facilities, etc.).

Aquatic Resources

EPA recommends that the Study evaluate any potential aquatic resource impacts, including direct fill and the potential for additional water quality degradation.

- To assess and avoid impacts, we recommend that the boundaries of any streams and wetlands present on or immediately surrounding the site be delineated.
- In accordance with the Clean Water Act Section 404, we recommend avoiding and minimizing impacts to Waters of the United States. If impacts to aquatic resources are proposed, we recommend including detailed data regarding resource type, size, condition, and functions and a plan to offset the functions of these resources in the watershed.

Water Quality and Stormwater

Existing water quality degradation has been documented in the Accotink Creek watershed. The creek is impaired, and Total Maximum Daily Loads (TMDLs) have been developed for pollutants such as sediment, chlorides, and E. coli. The Virginia Wetland Condition Assessment Tool (WetCAT) data viewer gives an indication of existing stressors from a GIS-based landscape assessment. WetCAT shows two mapped freshwater forested/shrub wetlands on

the site. Based on 2016 landcover data, the wetland to the north of the site is rated as Severely Stressed for water quality and habitat and the larger one to the center/west was rated as Somewhat Severely Stressed for habitat and water quality. (See https://cmap2.vims.edu/WetCAT/WetCAT_Viewer/WetCAT_VA_2D.html)

The Proposed Action involves the construction and operation of an approximately 525,000 square foot warehouse and administrative building with associated parking and covered storage for approximately 600 personnel. According to the Accotink Creek Watershed Management Plan (approved in 2010), the watershed consists of 27% impervious surface. While impacts may occur under a range of impervious area, water quality impairment is generally evident as impervious cover rises above 10%. Above 25% impervious cover, significant degradation is generally expected. As the proposed construction is on a currently undeveloped site in a highly developed watershed with water quality impairments, we recommend minimizing the construction of new impervious area and reducing the impact as much as possible.

- If the Proposed Action is selected, careful planning according to principles of low impact development (LID) and use of green infrastructure will be critical in reducing potential impacts. LID uses and mimics natural processes that result in the infiltration, evapotranspiration, and use of stormwater in order to protect water quality and associated aquatic habitat. LID employs principles such as preserving natural landscape features, minimizing effective imperviousness, and treating stormwater as a resource. A number of resources for implementing green infrastructure practices and LID can be found at https://www.epa.gov/nps/urban-runoff-additional-resources.
- EPA recommends that the EA clearly indicate how the Proposed Action will avoid contributing to existing water quality impairments, including expected measures such as minimizing site grading and preserving and enhancing natural vegetation. EPA encourages the Army to maintain or enhance a riparian buffer for Accotink Creek for water quality, habitat, and climate resilience.
- Where possible, please consider exploring opportunities to minimize impervious areas from buildings, parking, and other appurtenances. We suggest evaluating structured parking and multiple floors for buildings where possible. Where it is not feasible to reduce the size of the roof area, options such as green roof installation or rainwater harvesting could help offset effects. Water collection and storage from roofs could be used for purposes such as landscape irrigation or flushing toilets to reduce water consumption from the facility. Green roof space can also be used as a building amenity and can make buildings more visually appealing.
- We recommend incorporating green infrastructure into parking, sidewalks, and roadways. We recommend considering permeable pavement for sidewalks and trails and vegetated stormwater best management practices (BMPs) to reduce volume and pollution from runoff. Vegetation-based BMPs such as tree pits or trenches, rain gardens, bioswales, planter boxes, and constructed wetlands have a number of co-

benefits, including shade, aesthetic enhancement, and habitat.

EPA's Technical Guidance on Implementing the Stormwater Runoff Requirements for Federal Projects under Section 438 of the Energy Independence and Security Act can be found at: https://19january2017snapshot.epa.gov/sites/production/files/2015-09/documents/eisa-438.pdf

Greenhouse Gases, Energy Efficiency and Climate Change

EPA recommends that greenhouse gas (GHG) emissions associated with the Proposed Action be estimated and impacts evaluated. This includes emissions from site clearing and preparation, construction and conversion of the vegetated site, and emissions associated with operation and maintenance of the proposed facilities. We encourage minimizing GHG emissions where possible.

The Fourth National Climate Assessment (2018) indicates that many southeastern cities are particularly vulnerable to climate change. Resources, infrastructure, and human health are increasingly at risk from heat, flooding, and vector-borne disease linked to a changing climate. We recommend that the EA include a discussion of how the facility is planned to be resilient and contribute to resiliency efforts locally, given expected climate change impacts such as increased precipitation and extreme storm events.

As part of these efforts, we encourage incorporating energy efficiency into the building design and construction. For a large building, roof area is a key consideration. Roof treatments may impact energy efficiency; cool roof technologies may reduce air conditioning needs and green roofs may reduce energy use overall. Roof areas may also be suitable for installation of solar arrays to generate energy.

Please also consider recommendations such as those included in the LEED (Leadership in Energy and Environmental Design) Green Building Rating System for developing high-performance, sustainable buildings. <u>http://www.usgbc.org/leed</u>.

Wildlife and Vegetation

Impacts to the range of potential species should be evaluated from the Proposed Action. As this is a tract of undeveloped land in a generally residential and industrial area, it may provide a substantial habitat for local fauna.

We recommend discussing the vegetation to be cleared in detail. The acreage of each community type to be impacted should be assessed. For trees, species, community, and approximate age and size is useful to describe the impacts to vegetation and the habitat provided.

We suggest that the EA consider minimizing wildlife impacts in the design and maintenance of the facility. For example, migratory bird mortality may be caused by windows or reflective surfaces and lighting. (See https://www.audubon.org/magazine/november-december-2008/making-buildings-safe-birds) We suggest considering landscaping enhancements that

may provide for habitat and management of invasive species.

Air Quality - General Conformity

In the discussion of air quality, EPA recommends that the EA specifically identify each National Ambient Air Quality Standard for which the site is or has been in nonattainment or maintenance.

A general conformity rule analysis should be conducted according to the guidance provided in Determining Conformity of General Federal Actions to State or Federal Implementation Plans. Under the general conformity rule, reasonably foreseeable emissions associated with all operational and construction activities, both direct and indirect, must be quantified and compared to the annual de minimis levels for those pollutants in nonattainment or maintenance for that area.

Noise

Based on aerial imagery of the area, it appears that residential development is located to the north. The study would benefit from a full evaluation of potential noise impacts to residences or other sensitive receptors from both construction and operation.

- We recommend identifying the distance to the nearest sensitive receptors and considering the equipment used, vegetation and/or topography, and planned BMPs to evaluate potential impacts. As the expected operation is 6AM to 4PM, we recommend including an assessment of potential noise during early morning hours.
- Other surrounding areas may be less-noise sensitive; for example, it appears that industrial land uses are located to the south and east. However, the EA would benefit from an assessment of the potential for construction noise effects on other facilities or businesses in the vicinity.

Environmental Justice

EPA recommends that an assessment be conducted to identify whether areas of potential environmental justice (EJ) concern are present and may be disproportionately impacted by project activities. The assessment should fully consider potential traffic and transportation impacts that may affect communities of EJ concern. Such an assessment should consider if communities that may be impacted by additional traffic to the facility are already burdened with air quality and health impacts from existing traffic proximity, potential safety impacts, and potential disruption or delays to transportation networks.

• EPA's screening tool, EJSCREEN (<u>https://www.epa.gov/ejscreen</u>) may be a good starting point to enable analyses of populations potentially experiencing adverse environmental impacts. In addition to demographic data for communities of color and low-income populations, the tool provides data regarding linguistic isolation, education, and age, and stressors such as traffic proximity. Please note that EPA recommends starting evaluation at the census block group level as it is the most refined data available from the US Census.

- Please consider referring to "Promising Practices for EJ Methodologies in NEPA Reviews": <u>https://www.epa.gov/environmentaljustic/ej-iwg-promising-practices-ej-methodologies-nepa-reviews</u>.
- We recommend that the identification of potential populations of EJ concern inform outreach to affected communities to assure that communication regarding the project reaches citizens in an appropriate way. For example, EPA encourages posting notices of public meetings, and other resources at frequently visited community locations. These locations may include, but may not be limited to, schools, churches, community centers, barbershops, salons, and medical facilities. For communities that may include a number of non-English speaking residents, materials published in other languages may be needed for full engagement. We recommend documenting efforts to inform and engage potentially impacted communities in the EA.

Socioeconomic and Community Impacts

We recommend that potential socioeconomic and community impacts of the facility and additional personnel and its effect on local housing, employment, schools, businesses, housing prices and availability, property values, etc. be assessed. This should include an evaluation of potential beneficial and negative community impacts during construction and operation of the facility.

Traffic and Transportation

Given the expected increase in vehicles to the site, EPA recommends that the EA thoroughly address traffic and transportation, including an evaluation of the impacts associated with construction and expected conditions for the completed project.

- We suggest as part of the traffic evaluation, the EA discuss existing public transit, ride sharing, and pedestrian and bike access to the facility.
- We recommend that opportunities to reduce use of single occupancy vehicles be evaluated to reduce congestion in the surrounding transportation network, emissions, and the need for parking. Such measures could include improved access via public transit, trail/sidewalk access, bicycle facilities, and incentives for public transit and ride sharing.
- EPA suggests developing a Transportation Management Plan for the facility.

Hazardous Wastes and Contamination

We recommend that the Study include an analysis of any hazardous sites or materials in the vicinity.

• Any known soil or groundwater contamination on the site should be described in the document; this should include the known extent of the pollution and any remediation actions that may have been taken or are planned in the project area. If contamination is

present, please describe how earth-disturbing activities will be conducted to prevent the potential mobilization of contaminants.

• If contamination will be investigated, it would be helpful to indicate when studies are expected to be conducted.

Utilities

The Study would benefit from a discussion of whether existing infrastructure has sufficient capacity for project needs. Potential impacts from utility installation or upgrades should be assessed.

Please feel free to reach out to me if you have any questions on the topics listed above. I also request that you provide a copy or link to the EA by email when it is available for review.

Thank you, Carrie

Carrie Traver

Life Scientist Office of Communities, Tribes, & Environmental Assessment U.S. Environmental Protection Agency, Region 3 1650 Arch Street – 3RA12 Philadelphia, PA 19103 215-814-2772 traver.carrie@epa.gov

Commonwealth of Virginia

VIRGINIA DEPARTMENT OF ENVIRONMENTAL QUALITY

1111 E. Main Street, Suite 1400, Richmond, Virginia 23219 P.O. Box 1105, Richmond, Virginia 23218 (800) 592-5482 FAX (804) 698-4178

www.deq.virginia.gov

Travis A. Voyles Acting Secretary of Natural and Historic Resources Michael S. Rolband, PE, PWD, PWS Emeritus Director (804) 698-4020

April 14, 2022

Fort Belvoir Directorate of Public Works-Environmental Division (DPW-ED) FBNA@usace.army.mil

RE: Construction and operation of a distribution center at the Fort Belvoir North Area (FBNA) in Springfield, Virginia

To Whom it May Concern:

This letter is in response to the scoping request for the above-referenced project.

As you may know, the Department of Environmental Quality, through its Office of Environmental Impact Review (DEQ-OEIR), is responsible for coordinating Virginia's review of federal environmental documents prepared pursuant to the National Environmental Policy Act (NEPA) and responding to appropriate federal officials on behalf of the Commonwealth. Similarly, DEQ-OEIR coordinates Virginia's review of federal consistency documents prepared pursuant to the Coastal Zone Management Act which applies to all federal activities which are reasonably likely to affect any land or water use or natural resources of Virginia's designated coastal resources management area must be consistent with the enforceable policies Virginia Coastal Zone Management (CZM) Program.

DOCUMENT SUBMISSIONS

In order to ensure an effective coordinated review of the environmental documents, notification should be sent directly to OEIR. We request that you submit one electronic to <u>eir@deq.virginia.gov</u> (25 MB maximum) or make the documents available for download at a website, file transfer protocol (ftp) site or the VITA LFT file share system (Requires an "invitation" for access. An invitation request should be sent to <u>eir@deq.virginia.gov</u>.). We request that the review of these documents be done concurrently, if possible.

The environmental documents should include U.S. Geological Survey topographic maps as part of their information. We strongly encourage you to issue shape files with the NEPA document. In addition, project details should be adequately described for the benefit of the reviewers.

ENVIRONMENTAL REVIEW UNDER THE NATIONAL ENVIRONMENTAL POLICY ACT: PROJECT SCOPING AND AGENCY INVOLVEMENT

As you may know, NEPA (PL 91-190, 1969) and its implementing regulations (Title 40, *Code of Federal Regulations*, Parts 1500-1508) requires a draft and final Environmental Impact Statement (EIS) for federal activities or undertakings that are federally licensed or federally funded which will or may give rise to significant impacts upon the human environment. An EIS carries more stringent public participation requirements than an Environmental Assessment (EA) and provides more time and detail for comments and public decision-making. The possibility that an EIS may be required for the proposed project should not be overlooked in your planning for this project. Accordingly, we refer to "NEPA document" in the remainder of this letter.

While this Office does not participate in scoping efforts beyond the advice given herein, other agencies are free to provide scoping comments concerning the preparation of the NEPA document. Accordingly, we are providing notice of your scoping request to several state agencies and those localities and Planning District Commissions, including but not limited to:

Department of Environmental Quality:

- DEQ Regional Office*
- Air Division*
- Office of Wetlands and Stream Protection*
- Office of Local Government Programs*
- Division of Land Protection and Revitalization
- Office of Stormwater Management*

Department of Conservation and Recreation Department of Health* Department of Agriculture and Consumer Services Department of Wildlife Resources* Virginia Marine Resources Commission* Department of Historic Resources Department of Mines, Minerals, and Energy Department of Forestry Department of Transportation

Note: The agencies noted with a star (*) administer one or more of the enforceable policies of the Virginia CZM Program.

FEDERAL CONSISTENCY UNDER THE COASTAL ZONE MANAGEMENT ACT

Pursuant to the federal Coastal Zone Management Act of 1972, as amended, and its implementing regulations in Title 15, *Code of Federal Regulations*, Part 930, federal activities, including permits, licenses, and federally funded projects, located in Virginia's Coastal Management Zone or those that can have reasonably foreseeable effects on Virginia's coastal uses or coastal resources must be conducted in a manner which is consistent, to the maximum extent practicable, with the Virginia CZM Program.

Additional information on the Virginia's review for federal consistency documents can be found online at <u>https://www.deq.virginia.gov/permits-regulations/environmental-impact-review/federal-consistency</u>

DATA BASE ASSISTANCE

Below is a list of databases that may assist you in the preparation of a NEPA document:

• DEQ Online Database: Virginia Environmental Geographic Information Systems

Information on Permitted Solid Waste Management Facilities, Impaired Waters, Petroleum Releases, Registered Petroleum Facilities, Permitted Discharge (Virginia Pollution Discharge Elimination System Permits) Facilities, Resource Conservation and Recovery Act (RCRA) Sites, Water Monitoring Stations, National Wetlands Inventory:

o <a>www.deq.virginia.gov/ConnectWithDEQ/VEGIS.aspx

• DEQ Virginia Coastal Geospatial and Educational Mapping System (GEMS)

Virginia's coastal resource data and maps; coastal laws and policies; facts on coastal resource values; and direct links to collaborating agencies responsible for current data: • http://128.172.160.131/gems2/

• MARCO Mid-Atlantic Ocean Data Portal

The Mid-Atlantic Ocean Data Portal is a publicly available online toolkit and resource center that consolidates available data and enables users to visualize and analyze ocean resources and human use information such as fishing grounds, recreational areas, shipping lanes, habitat areas, and energy sites, among others.

http://portal.midatlanticocean.org/visualize/#x=-73.24&y=38.93&z=7&logo=true&controls=true&basemap=Ocean&tab=data&legends=false&la yers=true

• DHR Data Sharing System.

Survey records in the DHR inventory:

- o <u>www.dhr.virginia.gov/archives/data_sharing_sys.htm</u>
- DCR Natural Heritage Search

Produces lists of resources that occur in specific counties, watersheds or physiographic regions: • www.dcr.virginia.gov/natural heritage/dbsearchtool.shtml

• DWR Fish and Wildlife Information Service

Information about Virginia's Wildlife resources:

- o <u>http://vafwis.org/fwis/</u>
- Total Maximum Daily Loads Approved Reports
 - <u>https://www.deq.virginia.gov/programs/water/waterqualityinformationtmdls/tmdl/tmdlde</u> velopment/approvedtmdlreports.aspx

- Virginia Outdoors Foundation: Identify VOF-protected land o <u>http://vof.maps.arcgis.com/home/index.html</u>
- ٠ Environmental Protection Agency (EPA) Comprehensive Environmental Response, Systems Compensation, and Liability Information System (CERCLIS) Database: Superfund Information

Information on hazardous waste sites, potentially hazardous waste sites and remedial activities across the nation, including sites that are on the National Priorities List (NPL) or being considered for the NPL:

- o www.epa.gov/superfund/sites/cursites/index.htm
- EPA RCRAInfo Search

Information on hazardous waste facilities:

- o www.epa.gov/enviro/facts/rcrainfo/search.html
- EPA Envirofacts Database

Inventory Reports: EPA Environmental Information, including EPA-Regulated Facilities and Toxics Release

- o www.epa.gov/enviro/index.html
- EPA NEPAssist Database

Facilitates the environmental review process and project planning: <u>http://nepaassisttool.epa.gov/nepaassist/entry.aspx</u>

review process, please feel free to contact me (telephone (804) 659-1915 or e-mail bettina.rayfield@deq.virginia.gov). If you have questions about the environmental review process and/or the federal consistency

I hope this information is helpful to you.

Sincerely,

VAN Ka

Bettina Rayfield, Program Manager Environmental Impact Review and Long-Range Priorities

From:	Fulcher, Valerie
То:	rr dgif-ESS Projects; Keith Tignor; rr DCR-PRR Environmental Review; odwreview (VDH); Carlos Martinez; Kotur
	Narasimhan; Lawrence Gavan; Bob Lazaro; Terrance Lasher; Roger Kirchen; rr EIR Coordination; Mark Miller; Atkinson, Kelly
Cc:	FBNA
Subject:	[Non-DoD Source] NEW SCOPING FT BELVOIR NORTH AREA
Date:	Tuesday, May 3, 2022 2:23:54 PM
Attachments:	FNBA Distribution Center Request for Early Input Notice (1).pdf Ft Belvoir Distribution Center Scoping Response.pdf

Good afternoon—attached is a request for scoping comments on the following:

Construction and operation of a distribution center at the Fort Belvoir North Area (FBNA) in Springfield, Virginia

If you choose to make comments, please send them directly to the project sponsor (FBNA@usace.army.mil) and copy the DEQ Office of Environmental Impact Review: <u>eir@deq.virginia.gov</u>. We will coordinate a review when the environmental document is completed.

DEQ-OEIR's scoping response is also attached.

If you have any questions regarding this request, please email our office at <u>eir@deq.virginia.gov</u>.

Valerie

--

Valerie A. Fulcher, CAP, OM, Admin/Data Coordinator Senior

Department of Environmental Quality

Environmental Enhancement - Office of Environmental Impact Review

1111 East Main Street

Richmond, VA 23219

NEW PHONE NUMBER: 804-659-1550

Email: Valerie.Fulcher@deq.virginia.gov

https://www.deq.virginia.gov/permits-regulations/environmental-impact-review

OUR ENFORCEABLE POLICIES HAVE BEEN UPDATED FOR 2021: <u>https://www.deq.virginia.gov/permits-regulations/environmental-impact-review/federalconsistency</u>

For program updates and public notices please subscribe to Constant Contact: <u>https://lp.constantcontact.com/su/MVcCump/EIR</u> Project Name: Expedited - NEW SCOPING FT BELVOIR NORTH AREA

Project #: N/A UPC #: N/A Location: Springfield VA

VDH – Office of Drinking Water has reviewed the above project. Below are our comments as they relate to proximity to **public drinking water sources** (groundwater wells, springs and surface water intakes). Potential impacts to public water distribution systems or sanitary sewage collection systems **must be verified by the local utility.**

There are no public groundwater wells within a 1-mile radius of the project site.

	6	1 5
PWS ID		
Number	System Name	Facility Name
6059501	FAIRFAX COUNTY WATER AUTHORITY	OCCOQUAN RESERVOIR INTAKE

The following surface water intakes are located within a 5 mile radius of the project site:

The project is not within the watershed of any public surface water intakes.

Best Management Practices should be employed, including Erosion & Sedimentation Controls and Spill Prevention Controls & Countermeasures on the project site.

Materials should be managed while on site and during transport to prevent impacts to nearby surface water.

The Virginia Department of Health – Office of Drinking Water appreciates the opportunity to provide comments. If you have any questions, please let me know.

Best Regards,

Arlene F. Warren GIS Program Support Technician Virginia Department of Health, Office of Drinking Water 109 Governor Street, 6th Floor Richmond, VA 23219 804-356-6658 (office/cell/text) On Tue, May 3, 2022 at 2:16 PM Fulcher, Valerie <<u>valerie.fulcher@deq.virginia.gov</u>> wrote: Good afternoon—attached is a request for scoping comments on the following:

Construction and operation of a distribution center at the Fort Belvoir North Area (FBNA) in Springfield, Virginia

If you choose to make comments, please send them directly to the project sponsor (FBNA@usace.army.mil) and copy the DEQ Office of Environmental Impact Review: <u>eir@deq.virginia.gov</u>. We will coordinate a review when the environmental document is completed.

DEQ-OEIR's scoping response is also attached.

If you have any questions regarding this request, please email our office at <u>eir@deq.virginia.gov</u>.

Valerie

--

Valerie A. Fulcher, CAP, OM, Admin/Data Coordinator Senior

Department of Environmental Quality

Environmental Enhancement - Office of Environmental Impact Review

1111 East Main Street

Richmond, VA 23219

NEW PHONE NUMBER: 804-659-1550

Email: Valerie.Fulcher@deq.virginia.gov

https://www.deq.virginia.gov/permits-regulations/environmental-impact-review

OUR ENFORCEABLE POLICIES HAVE BEEN UPDATED FOR 2021: <u>https://www.deq.virginia.gov/permits-regulations/environmental-impact-review/federal-</u> <u>consistency</u>

For program updates and public notices please subscribe to Constant Contact: <u>https://lp.constantcontact.com/su/MVcCump/EIR</u>

From:	Steward, Accotink Creek			
To:	<u>FBNA</u>			
Cc:	phillip@prknetwork.org; Renee Grebe; Susan Bonney; Ann Bennett			
Subject:	[URL Verdict: Neutral][Non-DoD Source] Fort Belvoir North Area Distribution Center Early Input			
Date:	Tuesday, May 3, 2022 10:12:03 PM			
Attachments:	<u>1651629000540.png</u>			
	<u>1651629079543.png</u>			

RE: Fort Belvoir North Area Distribution Center - Early Input of the Friends of Accotink Creek

These comments include the larger issues of the <u>Fort Belvoir North Area Final Area Development</u> <u>Plan (ncpc.gov)</u>

Who was invited to the April 19th public meeting or how was it announced? We were unaware.

We request site visits by concerned stakeholders be arranged.

Go for the Gold – LEED Gold. The <u>National Geospatial Agency</u> did it, so can all other buildings on Fort Belvoir North Area.

Neither our country nor the world can meet climate goals by cutting down more forests and hoping the climate will not notice. Forward-thinking and difficult choices must be made and we all must make them.

"To keep the nation secure, we must tackle the existential threat of climate change. The unprecedented scale of

wildfires, floods, droughts, typhoons, and other extreme weather events of recent months and years have damaged our

installations and bases, constrained force readiness and operations, and contributed to instability around the world." - Lloyd J. Austin III, Secretary of Defense, <u>Department of Defense Climate Risk</u> <u>Analysis</u>, Report Submitted to National Security Council, October 2021.

It is not facetious to suggest that we preserve the tree canopy and instead use the Fort Belvoir golf course for building or for reforestation.

2-to-1 tree replanting somewhere offsite? The likelihood of anyone offering their parking lot or playing field for this purpose seems vanishingly dim. Further, only mature trees will be counted (typically those above 8" diameter in the survey). Figuring in the expected survival rate of any replacement saplings will inevitably yield a lower tree population than what was sacrificed.

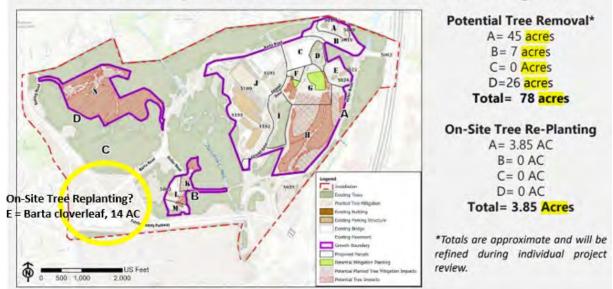
Digging up the earlier remediation tree plantings already? Really? Was there no planning involved in the selection of their locations? Will re-remediation plantings now be proposed that are truly protected?

Fort Belvoir North Area is not too far from Metro for improved <u>Complete Street</u> enhancements to provide climate reduction pedestrian and bicycle travel options to commuting personnel, such as:

• Possibly add bike lanes and shared use path along Backlick Road in addition to the existing

sidewalk

- Possibly extend Backlick Road sidewalk south from Barta Road to connect with existing sidewalk
- Possibly a connection to the Fairfax County Parkway Trail via Constantine Avenue or Beverley Park Drive
- Possibly a pedestrian bridge across I-95 connecting to Loisdale Road bicycle facilities


Possibilities for environmental remediation:

Stream remediation projects could focus on Field Lark Branch on the eastern boundary of Fort Belvoir North Area) and the small unnamed tributaries on Fort Belvoir North Area itself, in collaboration with Fairfax County Stormwater Planning Division

The <u>Accotink Gorge</u> Chinese wisteria removal project would benefit from the support of Fort Belvoir and its naturalist staff. The Accotink Gorge is immediately south of Fort Belvoir North Area and the Chinese wisteria infestation extends upstream along Accotink Creek onto the base.

Acquire land nearby for parks or conservation easements, possibly immediately to the north or south along Accotink Creek, perhaps even completing a protected park corridor from North Area to Main Base along the creek.

Replant the Fairfax County Parkway. The Barta Road cloverleaf alone would provide about 14 acres never replanted after the Parkway extension across Fort Belvoir North Area in 2010. This area is now partly colonized by exotic invasives, a sad successor to the mature forests that were lost.

Final Area Development Plan - Tree Removal and Mitigation

Solarize everything that does not move.

Final Area Development Plan - Renewable Energy

- Project costs anticipate LEED SGREP! and Low Impact Development (LID) techniques.
- New facilities are intended to support onsite renewable energy production and will be considered on a case-by-case basis.
- · Solar arrays considered for:
 - Parking structure rooftops
 - Surface lots
 - Covered walkways
 - New facility rooftops will be evaluated for potential during the LEED design process and against mission and security requirements

COMMONWEALTH of VIRGINIA

DEPARTMENT OF CONSERVATION AND RECREATION

Frank N. Stovall Deputy Director for Operations

Darryl Glover Deputy Director for Dam Safety, Floodplain Management and Soil and Water Conservation

Laura Ellis Interim Deputy Director for Administration and Finance

June 2, 2022

Heather Cisar USACE-Planning Division 2 Hopkins Plaza Baltimore, MD 21201

Re: Fort Belvoir North Area Distribution Center

Dear Ms. Cisar:

The Department of Conservation and Recreation's Division of Natural Heritage (DCR) has searched its Biotics Data System for occurrences of natural heritage resources from the area outlined on the submitted map. Natural heritage resources are defined as the habitat of rare, threatened, or endangered plant and animal species, unique or exemplary natural communities, and significant geologic formations.

According to the information currently in our files, the Fort Belvoir Proving Ground Conservation Site is located within the project site. Conservation sites are tools for representing key areas of the landscape that warrant further review for possible conservation action because of the natural heritage resources and habitat they support. Conservation sites are polygons built around one or more rare plant, animal, or natural community designed to include the element and, where possible, its associated habitat, and buffer or other adjacent land thought necessary for the element's conservation. Conservation sites are given a biodiversity significance ranking based on the rarity, quality, and number of element occurrences they contain; on a scale of 1-5, 1 being most significant. Fort Belvoir Proving Ground Conservation Site has been given a biodiversity significance ranking of B3, which represents a site of high significance. The natural heritage resource of concern at this site is:

Isotria medeoloides

Small whorled pogonia

G2?/S2/LT/LE

Small whorled pogonia is a perennial orchid that grows in a variety of woodland habitats in Virginia, but tends to favor mid-aged woodland habitats on gently north or northeast facing slopes often within small draws. It is quite natural for plants of this species to remain dormant in the soil for long periods of time. Direct destruction, as well as habitat loss and alteration, are principle reasons for the species' decline (Ware, 1991). The Virginia Field Office of the U.S. Fish and Wildlife Service (USFWS) recommends that field surveys for this species be conducted in areas of Virginia south of Caroline County from May 25 through July 15 and in areas of Virginia from Caroline County and north from June 1 through July 20 (K. Mayne, pers. com. 1999). Please note that this species is currently classified as threatened by the USFWS and as endangered by the Virginia Department of Agriculture and Consumer Services (VDACS).

Furthermore, according to a DCR biologist and predicted suitable habitat modeling, there is potential for additional populations of Small whorled pogonia to occur in the project area if suitable habitat exists on site.

600 East Main Street, 24th Floor | Richmond, Virginia 23219 | 804-786-6124

State Parks • Soil and Water Conservation • Outdoor Recreation Planning Natural Heritage • Dam Safety and Floodplain Management • Land Conservation To minimize adverse impacts to the documented occurrence of Small whorled pogonia, DCR recommends avoidance of the conservation site. Due to the potential for this site to support additional populations of Small whorled pogonia, DCR recommends an inventory for the resource in the study area. With the survey results we can more accurately evaluate potential impacts to natural heritage resources and offer specific protection recommendations for minimizing impacts to the documented resources.

DCR-Division of Natural Heritage biologists are qualified to conduct inventories for rare, threatened, and endangered species. Please contact Anne Chazal, Natural Heritage Chief Biologist, at <u>anne.chazal@dcr.virginia.gov</u> or 804-786-9014 to discuss availability and rates for field work. A list of other individuals who are qualified to conduct inventories may be obtained from the USFWS.

Due to the legal status of Small whorled pogonia, DCR also recommends coordination with USFWS to ensure compliance with protected species legislation.

In addition, the proposed project may impact Ecological Cores (C5) as identified in the Virginia Natural Landscape Assessment (<u>https://www.dcr.virginia.gov/natural-heritage/vaconvisvnla</u>). Mapped cores in the project area can be viewed via the Virginia Natural Heritage Data Explorer, available here: <u>http://vanhde.org/content/map</u>.

Ecological Cores are areas of at least 100 acres of continuous interior, natural cover that provides habitat for a wide range of species, from interior-dependent forest species to habitat generalists, as well as species that utilize marsh, dune, and beach habitats. Interior core areas begin 100 meters inside the nearest core edges and continue to the deepest parts of cores. Cores also provide natural and economic benefits of open space, recreation, water quality (including drinking water recharge and protection, and erosion prevention), and air quality (including carbon sequestration and oxygen production). Cores are ranked from C1 to C5 (C5 being the least significant) using nine prioritization criteria, including the habitats of natural heritage resources they contain.

Impacts to cores occur when their natural cover is partially or completely converted permanently to developed land uses. Habitat conversion to development results in changes that reduce ecosystem processes, biodiversity, population viability and habitat quality due to limited recolonization, increased predation, and increased introduction and establishment of invasive species.

Therefore, avoiding or minimizing core impacts is a key mitigation measure that will reduce deleterious effects and preserve the area and connectivity of habitats that are key components of biodiversity. DCR recommends efforts to minimize edge in remaining habitat fragments, retain natural corridors that allow movement between fragments and design the intervening landscape to support native wildlife (natural cover versus lawns).

There are no State Natural Area Preserves under DCR's jurisdiction in the project vicinity.

Under a Memorandum of Agreement established between the Virginia Department of Agriculture and Consumer Services (VDACS) and the DCR, DCR represents VDACS in comments regarding potential impacts on statelisted threatened and endangered plant and insect species. Survey results should be coordinated with DCR-DNH and USFWS. Upon review of the results, if it is determined the species is present, and there is a likelihood of a negative impact on the species, DCR-DNH will recommend coordination with VDACS to ensure compliance with Virginia's Endangered Plant and Insect Species Act. New and updated information is continually added to Biotics. Please re-submit project information and map for an update on this natural heritage information if the scope of the project changes and/or six months has passed before it is utilized.

The Virginia Department of Wildlife Resources (VDWR) maintains a database of wildlife locations, including threatened and endangered species, trout streams, and anadromous fish waters that may contain information not documented in this letter. Their database may be accessed from <u>http://vafwis.org/fwis/</u> or contact Amy Martin at (804-367-2211) or <u>amy.martin@dwr.virginia.gov</u>.

Should you have any questions or concerns, please contact me at 804-225-2429. Thank you for the opportunity to comment on this project.

Sincerely,

Type Meade

Tyler Meader Natural Heritage Locality Liaison

CC : Troy Andersen, USFWS

Literature Cited

Ware, D.M.E. 1991. Small whorled pogonia. In Virginia's Endangered Species: Proceedings of a Symposium. K. Terwilliger ed. The McDonald and Woodward Publishing Company, Blacksburg, Virginia.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX B – WETLAND DELINEATION REPORT

WETLAND DELINEATION REPORT Distribution Center Fort Belvoir North Area Fort Belvoir, Virginia

Prepared for:

U.S. Army Corps of Engineers Baltimore District, RSFO

Prepared by:

U.S. Army Corps of Engineers Baltimore District, Planning Division 2 Hopkins Plaza Baltimore, Maryland 21201

December 2021

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

1	INTRODUCTION	1
1.1	STUDY PURPOSE	1
1.2	STUDY AREA	1
2	METHODS	
2.1	DATA COLLECTION AND ANALYSIS	2
2.2	WETLAND DELINEATION	2
2.3	GLOBAL POSITIONING SYSTEM (GPS) METHODOLOGY	2
3	RESULTS	2
3.1	GENERAL WETLAND FINDINGS	2
3.1.1	VEGETATION	3
3.1.2	GENERAL SOIL CHARACTERISTICS	3
3.1.3	HYDROLOGY	3
3.2	STREAMS	4
3.3	WETLANDS	4
4	CONCLUSIONS	6
5	ACRONYMS AND ABBREVIATIONS	.10

LIST OF TABLES

Table 3-1.	Soils at BEP Traffic Mitigation Sites	3
	Wetlands at BEP Traffic Mitigation Sites	

APPENDICES

Appendix A: Figures Figure 1: Vicinity Map Figure 2: Wetlands – Northern Portion of Study Area Figure 3: Wetlands – Southern Portion of Study Area

Appendix B: Routine Wetland Data Forms

Appendix C: Photographs

Appendix D: Web Soil Survey Report

Appendix E: Cowardin Classification Key

THIS PAGE INTENTIONALLY LEFT BLANK

1 INTRODUCTION

1.1 STUDY PURPOSE

The U.S. Army Corps of Engineers (USACE), Baltimore District, Planning Division prepared this report at the request of the RSFO to identify and delineate waters of the U.S. (WUS) (i.e., wetlands and streams) found within the proposed site boundaries.

A project proponent proposes to design and construct a new distribution center on Fort Belvoir North Area (FBNA), Fort Belvoir, Fairfax County, Virginia. The facility will include a two-story warehouse building with associated parking, stormwater management facilities, and infrastructure. The building will provide warehouse storage, vehicle maintenance, and shipping and receiving areas. It will also contain offices, open office space, conference rooms, storage spaces and support spaces to serve approximately 90 occupants.

The study purpose was achieved through (1) collection and synthesis of existing wetlands and waters of the U.S. information; (2) a site visit to conduct routine wetland delineations as prescribed in the 1987 *Corps of Engineers Wetland Delineation Manual* and the 2010 *Regional Supplement to the Corps of Engineers Wetland Delineation Manual*: Atlantic and Gulf Coastal Plain Region; and (3) preparation of a report of findings.

1.2 STUDY AREA

The proposed project area is approximately 180 acres, is currently forested, and situated in the northwestern half of FBNA, west of Accotink Creek. It is bounded by Accotink Creek to the east, Barta Road to the south, a residential neighborhood to the north, and Fairfax County Parkway to the west (Appendix A). In general, surface water appears to drain from the northwest to the southeast in the area as part of the Accotink Creek watershed.

FBNA is located near the transition between the Eastern Piedmont and the Coastal Plain Physiographic Provinces and therefore exhibits characteristics of both. Piedmont areas consist largely of Precambrian metamorphic and Cambrian igneous rock formations, whereas Coastal Plain areas consist of an eastward thickening wedge of unconsolidated sediments of gravel, sand, silt, and clay from the Cretaceous to Tertiary periods (Fort Belvoir 2014).

The topography of FBNA is gently rolling, except for steep slopes bordering Accotink Creek. Accotink Creek enters FBNA from the north at an elevation of approximately 120 feet above mean sea level and descends to an elevation of approximately 100 feet above mean sea level before exiting FBNA to the south. Steep slopes rise from both the eastern and western banks of Accotink Creek and its unnamed tributaries located to the west within the proposed project area. The grades on the slopes range between 20 and 30 percent at most locations (Fort Belvoir 2014). Elevation of the site ranges from 300 to 200 feet above mean sea level and slopes slightly from northwest to southeast.

2 METHODS

2.1 DATA COLLECTION AND ANALYSIS

Existing wetland information and GIS data was collected from various sources for preliminary analysis and identification of potential wetland areas within the study area. Sources of data include: U.S. Geological Survey (USGS) topographic quadrangles (USGS, 1977), U.S. Department of Agriculture (USDA) Web Soil Survey (USDA, 2021), the U.S. Fish and Wildlife Service's (USFWS) National Wetland Inventory (NWI) maps (including aerial photography) (USFWS, 2015), and mapping found within the Draft Fort Belvoir Integrated Natural Resources Management Plan (INRMP), 2018-2023 (Belvoir, 2017).

2.2 WETLAND DELINEATION

The wetland delineation was performed pursuant to the 1987 *Corps of Engineers Wetland Delineation Manual* and the 2010 *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Atlantic and Gulf Coastal Plain Region*, as Federal and state agencies require use of these documents for jurisdictional investigations. The delineation field work was conducted 9-10 October and 19-20 November 2021. All delineations were conducted by a team from USACE, Baltimore District, Planning Division. Data points were completed for each wetland. Wetland boundaries were marked with consecutively numbered pink survey flagging. Photographs of the wetlands are included in Appendix C.

2.3 GLOBAL POSITIONING SYSTEM (GPS) METHODOLOGY

The field survey was completed using a Carlson handheld Global Positioning System (GPS). The objective of the GPS survey was to collect location data for each wetland delineation flag and soil sample point. This survey horizontally references the North American Datum of 1983 (NAD83). This data was then transferred into ArcGIS Pro 2.6.1 for analysis and mapping.

3 **RESULTS**

3.1 GENERAL WETLAND FINDINGS

Wetlands are defined by the presence of three parameters: hydrophytic vegetation, hydric soils, and wetland hydrology. Methods for determining if each of the three parameters are met are described in the 1987 Corps of Engineers Wetland Delineation Manual and the 2010 Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Atlantic and Gulf Coastal Plain Region.

Preliminary analysis of topographic maps, soils, and INRMP and NWI wetland mapping indicated the presence of wetlands and streams within the study area.

The USACE team placed numbered flags along the limits of six wetlands and one WUS within the study area. The flags were located using GPS survey methods. The wetland areas amount to over

2

78 acres of wetlands (Tables 3-2 and 3-3, Section 3.2). The maps of wetlands delineated within the study area are shown in Figures 1 and 2, Appendix A.

3.1.1 VEGETATION

For purposes of wetland identification, many plants are assigned an indicator status by the USFWS, which is useful for determining the probability of their occurrence in wetlands. Wetlands delineated within the study area were dominated by plants normally expected to occur within wetlands. No plant species observed on the site are listed as rare, threatened, or endangered at either a Federal or state level.

3.1.2 GENERAL SOIL CHARACTERISTICS

Hydric soils are defined by the National Technical Committee for Hydric Soils (NTCHS) as soils that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part (Federal Register, 1994). These soils, under natural conditions, are either saturated or inundated long enough during the growing season to support the growth and reproduction of hydrophytic vegetation.

Drainage class refers to the frequency and duration of wet periods under conditions similar to those under which the soil formed. Alterations of the water regime by human activities, either through drainage or irrigation, are not a consideration unless they have significantly changed the morphology of the soil. Seven classes of natural soil drainage are recognized: excessively drained, somewhat excessively drained, well drained, moderately well drained, somewhat poorly drained, poorly drained, and very poorly drained.

While the USDA web soil survey (USDA, 2021) identifies 29 soil series within the study area, soils within the wetlands are predominantly Sassafras-Marumsco complex, Nathalie gravelly loam or Rhodhiss sandy loam. Appendix D contains the full soil report. Table 3-1 lists a summary of the soils within the wetland perimeters, including name, the drainage class, and hydric status.

Soil Name	Map Symbol	Drainage Class	Hydric
Glenelg silt loam, 7 to 15 percent slopes	39B	Well drained	No
Nathalie gravelly loam, 7 to 15 percent slopes	79C	Well drained	No
Rhodhiss sandy loam, 15 to 25 percent slopes	87D	Well drained	No
Sassafras-Marumsco complex, 7 to 15 percent slopes		Well drained	No
Sassafras-Marumsco, 15 to 25 percent slopes	91D	Well drained	Yes

Table 3-1. Soils within the Wetlands	S
--------------------------------------	---

3.1.3 HYDROLOGY

Evidence of wetland hydrology was observed in the areas identified as wetlands during the site investigation, and included water-stained leaves, oxidized rhizospheres along living roots, surface water, saturation, sparsely vegetated concave surface, and geomorphic position.

3.2 STREAMS

Several unnamed tributaries originate within the study area and flow in a generally west-to-east direction to their confluence with Accotink Creek off-site. Accotink Creek is the dominant hydrologic feature of FBNA, roughly bisecting the approximately 800-acre area (see Figure 1). The unnamed perennial stream originating out of Wetland 1 was flagged during the field investigations and found to be consistent with previous mapping associated with the INRMP. As such, and to expedite the field investigations, the remaining streams were not flagged but were walked to compare their general shape and extent to that found in the INRMP mapping. All streams exhibited signs of recent erosion such as collapsed, unvegetated banks and steep incision, particularly as they progressed further downstream towards the eastern half of the study area.

3.3 WETLANDS

Six wetlands were delineated within the proposed project areas, amounting to approximately 2.33 acres. Wetland data forms are located in Appendix B.

Plants found in and around the wetlands are classified by a regional wetland indicator status based on USDA's National Wetland Plant List. Indicator categories found in the wetlands on this site include:

FAC: Facultative Hydrophyte - Sometimes found in wetlands (34-66% frequency)

FACW: Facultative Wet Hydrophyte - Usually found in wetlands (66-99% frequency)

OBL: Obligate Hydrophyte - Almost always found in wetlands (99+% frequency)

NI: No Indicator – USDA has not assigned an indicator status for the species

Wetland 1 is a riparian, forested wetland that forms the headwaters of an unnamed, perennial tributary that discharges to Accotink Creek off-site to the east of the study area. The wetland borders merge into the narrow banks of the stream, which becomes progressively more incised as it travels downstream (see photos in Appendix C). This wetland is classified as a palustrine forested wetland with broad-leaved deciduous vegetation and a temporary flood regime (PFO1A). Dominant vegetation includes blackgum (*Nyssa sylvatica*), red maple (*Acer rubrum*) and bitternut hickory (*Carya* cordiformis) in the canopy, musclewood (*Carpinus caroliniana*) and sweetgum (*Liquidambar styraciflua*) in the understory, and cinnamon fern (*Osmundastrum* cinnamomeum) and Japanese stiltgrass (*Microstegium vimineum*) in the herbaceous layer. The soil matrix was predominantly a sandy loam with a 7.5 YR 4/1 color and redoximorphic concentrations in the matrix of 7.5 YR 4/6 and 10 YR 5/8. This chroma meets a depleted matrix hydric soil indicator.

Wetland 2 is a palustrine emergent wetland with persistent vegetation and a flood regime classified as seasonally flooded/saturated (PEM1E). The dominant vegetation observed included Japanese stiltgrass, false nettle (*Boehmeria cylindrica*), New York fern (*Thelypteris noveboracensis*), *Carex* spp. and common greenbrier (*Similar rotundifolia*). The soil matrix was a silt loam 0-4 inches from the surface, with a matrix color of 10 YR 4/1 and 10 YR 6/8 redoximorphic features. Below the top 4 inches the soil became extremely compacted with a mixture of clay and gravel, except for the small depressional portion that sits above the relict

unpaved road bed. The matrix color was 10 YR 6/1 with 10 YR 5/8 redoximorphic features. This soil matrix met the depleted matrix hydric soil indicator.

Note: The hydrology of this small wetland appears to originate from a hillside seep, which is a common wetland type found within Fort Belvoir. The groundwater daylights in the depression upslope from the relic road bed, then flows downslope along its compacted surface. The hydrology is such that hydric soil characteristics are noted in the near-surface layers and hydrophytic vegetation predominates; however, there lacks a distinct and discrete discharge feature to the incised stream located to the north and downslope from this wetland.

Wetland 3 is classified as a palustrine forested wetland with broad-leaved deciduous vegetation and a temporary flood regime (PFO1A). Wetland 3 is a slope wetland that discharges into an unnamed tributary to Accotink Creek. The dominant canopy species observed was highbush blueberry (*Vaccinium corymbosum*). Dominant understory vegetation observed was sensitive fern (*Onoclea sensibilis*), deer tongue (*Dichanthelium clandestinum*) and common greenbrier. The soil matrix was primarily a 10 YR 4/2 fine sandy loam with 7.5 YR 5/6 redoximorphic features. The matrix meets the hydric soil indicator for a depleted matrix.

Wetland 4 is classified as a palustrine forested wetland with broad-leaved deciduous vegetation and a temporary flood regime (PFO1A). Wetland 4 is a riparian wetland located further upstream of Wetland 3's discharge point into the same unnamed tributary. The dominant canopy species observed were sweet gum, red maple, white oak and tulip poplar (*Liriodendron tulipifera*). The dominant understory vegetation consists of American holly (*Ilex opaca*) and highbush blueberry, and the herbaceous layer was dominated by cinnamon fern, southern lady fern (*Athyrium asplenioides*), whorled wood aster (*Oclemena acuminata*) and common greenbrier. The soil matrix was predominantly a 10 YR 4/1 sandy clay loam with redoximorphic features of 7.5 YR 5/8 which meets the hydric soil criteria for a depleted matrix.

Wetland 5 is classified as a palustrine forested wetland with broad-leaved deciduous vegetation and a temporary flood regime (PFO1A). Wetland 5 is a riparian wetland that drains into the unnamed tributary to Accotink Creek downstream (south) of the culvert crossing under Cissna Road. The canopy dominant species observed was tulip poplar with sweet gum and American holly in the sapling layer. The dominant understory species observed were Japanese stiltgrass, New York fern, soft rush (*Juncus effusus*), three-way sedge (*Dulichium arundinaceum*) and clearweed (*Pilea pumila*). The soil matrix was primarily a sandy loam with a 10 YR 5/2 color with redoximorphic features of 7.5 YR 5/8. These colors meet the hydric soil depleted matrix indicator.

Wetland 6 is classified as a palustrine emergent wetland with persistent vegetation and a temporary flood regime (PEM1A). This small, depressional wetland is located adjacent to an unnamed tributary to Accotink Creek. The dominant vegetation observed was Japanese stiltgrass, mountain laurel (*Kalmia latifolia*) and highbush blueberry. The soil matrix was predominantly a 10 YR 2/1 sandy loam with 10 YR 5/8 redoximorphic features. These soils met the depleted matrix hydric soil indicator.

Descriptions of each wetland are provided in Table 3.3. A Cowardin classification key can be found in Appendix E.

Table 5-2. We thanks in the Study Area			
Wetland	Cowardin Classification	Total Acreage	Connection to Navigable Waters
Wetland 1	PFO1A	1.56	Drains to perennial tributary to Accotink Creek
Wetland 2	PEM 1E	0.04	Isolated wetland (see Note above)
Wetland 3	PFO1A	0.45	Drains to perennial tributary to Accotink Creek
Wetland 4	PFO1A	0.24	Drains to same perennial tributary to Accotink Creek as Wetland 3
Wetland 5	PFO1A	0.01	Drains to perennial tributary to Accotink Creek
Wetland 6	PEM1A	0.03	Drains to perennial tributary to Accotink Creek.
		2.33 Acres	

Table 3-2. Wetlands in the Study Area

4 CONCLUSIONS

Six wetlands were delineated by USACE, Baltimore District, Planning Division, within the study area on Fort Belvoir's North Area. The delineation was performed over several days between October-November 2021.

The jurisdiction of the wetlands included in this report have <u>not</u> been verified by USACE-Regulatory Branch or the Virginia Department of Environmental Quality (DEQ). Any future design or construction that may impact these wetlands or the wetland buffers will require coordination with the USACE and DEQ, specifically in regard to potential permitting actions within Section 404, Section 10, and all other potential permitting actions.

THIS PAGE INTENTIONALLY LEFT BLANK

REFERENCES

- Cowardin, Lewis M., et. al. 1979. *Classification of Wetlands and Deepwater Habitats of the United States*. U.S. Fish and Wildlife Service, Office of Biological Services. Washington, DC.
- Munsell Color. 1992. *Munsell Color Charts 1992 Revised Edition*. Kollmorgen Corporation. Baltimore, MD. Not paginated.
- Reed, Porter B., Jr. 1988. National List of Plant Species that Occur in Wetlands: Northeast (Region 1). U.S. Fish and Wildlife Service, National Ecology Research Center. Biological Report 88(26.1). Fort Collins, CO. 111p.
- U.S. Department of Agriculture Natural Resources Conservation Service. 2018. Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov/. Accessed December 2021.
- U.S. Department of Agriculture Natural Resources Conservation Service. Updated frequently. National Plants Database, available at http://plants.usda.gov/index.html
- U.S. Department of the Army, Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. Final Report. Technical Report Y-87-1. U.S. Army Engineer Waterways Experiment Station. St. Petersburg, FL.
- U.S. Department of the Army, Environmental Laboratory. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Atlantic and Gulf Coastal Plain Region (Version 2.0). Technical Report 10-20. U.S. Army Engineer Research and Development Center. Vicksburg, MS.
- U.S. Fish and Wildlife Service. 2015. National Wetlands Inventory, Conterminous 48 States. Washington, D.C. Updated continuously.

5 ACRONYMS AND ABBREVIATIONS

BARC	Beltsville Agricultural Research Center
BEP	Bureau of Engraving and Printing
CPF	Currency Production Facility
EIS	Environmental Impact Statement
FAC	Facultative Hydrophyte
FACW	Facultative Wet Hydrophyte
FBNA	Fort Belvoir North Area
GPS	Global Positioning System
INRMP	Integrated Natural Resources Management Plan
NAD83	North American Datum of 1983
NI	No Indicator
NTCHS	National Technical Committee for Hydric Soils
NWI	National Wetland Inventory
OBL	Obligate Hydrophyte
RSFO	
USACE	U.S. Army Corps of Engineers
USDA	U.S. Department of Agriculture
USFWS	U.S. Fish and Wildlife Service
USGS	U.S. Geologic Survey
WUS	Waters of the U.S.

APPENDIX A Figures

Figure 1 – FBNA Study Area Overview

Bureau of Engraving and Printing Wetland Delineation Report U.S. Army Corps of Engineers, Baltimore District July 2021

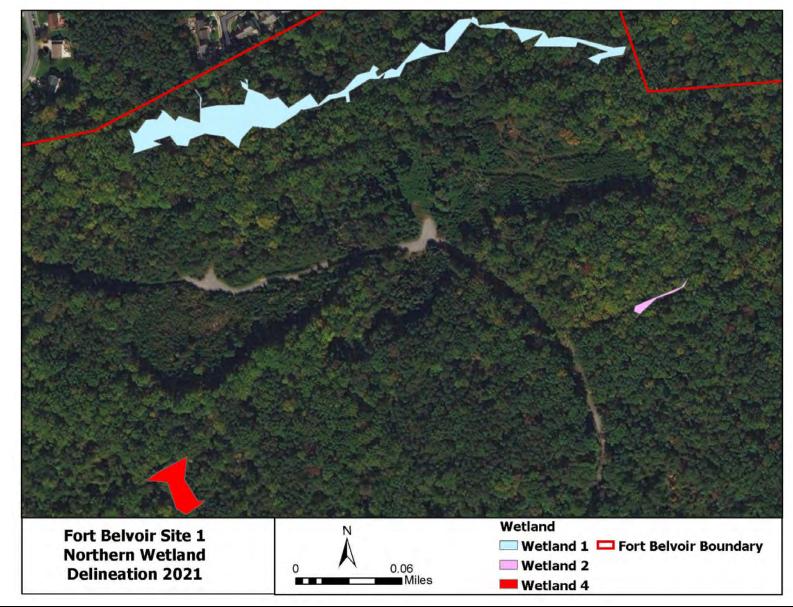


Figure 2: Wetlands – Northern Portion of Study Area

Bureau of Engraving and Printing Wetland Delineation Report U.S. Army Corps of Engineers, Baltimore District July 2021

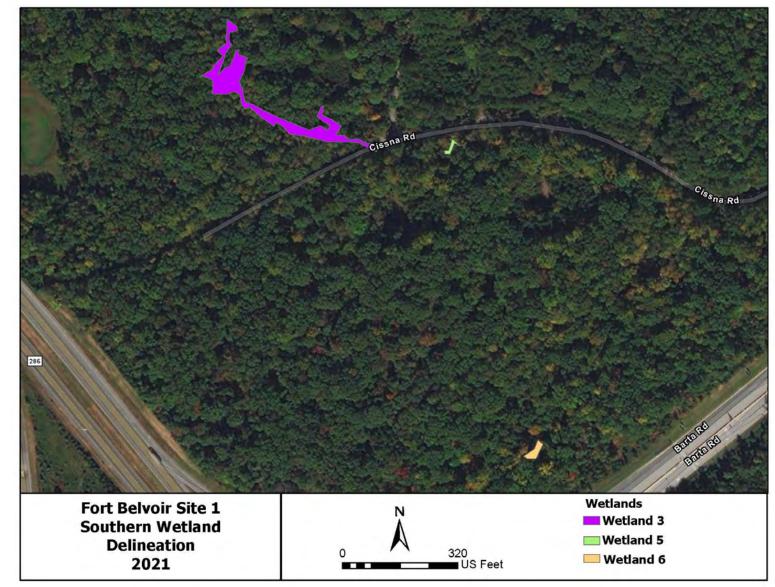


Figure 2: Wetlands – Southern Portion of Study Area

Bureau of Engraving and Printing Wetland Delineation Report U.S. Army Corps of Engineers, Baltimore District July 2021

APPENDIX B Routine Wetland Data Forms

APPENDIX C Photographs

APPENDIX D Cowardin Classification Key

APPENDIX E Wetlands and Deepwater Habitats Classification

APPENDIX C – COASTAL ZONE FEDERAL CONSISTENCY DETERMINATION

APPENDIX C Determination of Consistency with Virginia's Coastal Resources Management Program

This document provides the Commonwealth of Virginia with the Fort Belvoir Consistency Determination under the Coastal Zone Management Act Section 307(c)(1) and 15 Code of Federal Regulations (CFR) Part 930, Subpart C, for the Fort Belvoir North Area Distribution Center, Fort Belvoir, Virginia. The information in this Consistency Determination is provided pursuant to 15 CFR § 930.39.

This document represents an analysis of project activities in light of established Virginia Coastal Resources Management Program (CRMP) Enforceable Policies and Programs. Furthermore, submission of this consistency determination reflects the commitment of the U.S. Department of the Army (Army) to comply with those Enforceable Policies and Programs. The Proposed Action would be implemented in a manner that is consistent with the Virginia CRMP. The Army has determined that the construction and operation of the FBNA Distribution Center would have a negligible impact on any land and water uses or natural resources of the Commonwealth of Virginia's coastal zone.

C1 Description of Proposed Action

The Proposed Action involves the construction of a distribution center within Fort Belvoir's North Area (FBNA) (see Figure 1). The proposed distribution center warehouse and administrative building would be approximately 525,000 square feet (SF) and would include associated parking, covered storage, and a perimeter security fence, all to support approximately 600 personnel. This facility would support the delivery and receipt of materials within and across the Washington Metropolitan Area, requiring close proximity within the National Capital Region to achieve distribution efficiencies. The action would also provide compliance with Office of Management and Budget guidance that encourages "good stewardship of taxpayer resources" and increasing joint site usage.

C2 Assessment of Probable Effects

The Army has prepared a draft Environmental Assessment (EA) to evaluate the potential environmental impacts from the FBNA distribution center in accordance with the National Environmental Policy Act (NEPA) of 1969, as amended (42 U.S. Code 4321-4347), and 32 CFR Part 651, Environmental Analysis of Army Actions.

The Army intends to obtain all applicable permits required for implementation of the Proposed Action. A review of the permits and/or approvals required under the enforceable policies is being conducted. The Army has evaluated the construction of the FBNA distribution center for its foreseeable effects on the following enforceable policies:

Fisheries – The Proposed Action has no foreseeable impacts on fish or shellfish resources and would not affect the promotion of, or access to, commercial or recreational fisheries.

The proposed site is located approximately 4.5 miles northwest of the Potomac River and just west of Accotink Creek. The closest water features near the proposed site are unnamed tributaries to Accotink Creek and associated riparian wetlands. Compliance with the installation's Municipal Separate Storm Sewer System (MS4) Permit and the Virginia Erosion and Sediment Control regulations would minimize the risk of sediment being transported off the site to the Potomac River Fishery. Best management practices recommended by the Virginia Departments of Conservation and Recreation and Forestry would be employed when necessary.

Subaqueous Lands Management – The Virginia Marine Resources Commission, pursuant to Virginia Administrative Code (VAC) Section 28.2-1204, has jurisdiction over encroachments in, on, or over any State-owned rivers, streams and creeks. The project would have no foreseeable impacts on subaqueous resources.

Tidal and Non-tidal Wetlands Management – The Proposed Action would not affect any tidal wetlands. Potential impacts to non-tidal wetlands within the project area would be avoided, minimized and, if necessary, mitigated in accordance with applicable Virginia laws.

Dunes Management – The Proposed Action would not affect any coastal primary sand dunes.

Non-Point Source Water Pollution Control – Typically, a Proposed Action that is greater than 2,500 SF would require an erosion and sediment control (ESC) plan and a stormwater management plan to be developed. The ESC plan would include temporary erosion and sediment control measures. The ESC plan and stormwater management plan would be prepared utilizing the requirements for water quality and quantity found in the Virginia Technical Criteria Part IIB (9VAC25-870-62 through 9VAC25-870-92). The Proposed Action would disturb approximately 30 acres of soil; therefore, an ESC plan and stormwater management plan are required. A construction general permit in accordance with 9VAC25-830-130 would also be required. Short-term, minor, adverse impacts would occur from the Proposed Action on surface water with regard to water quality. Appropriate temporary erosion and sediment control measures and stormwater Best Management Practices (BMP) would be employed to minimize impacts to water quality from earth disturbance and potential erosion during construction.

Point Source Water Pollution Control – The Proposed Action would not result in point source water discharge.

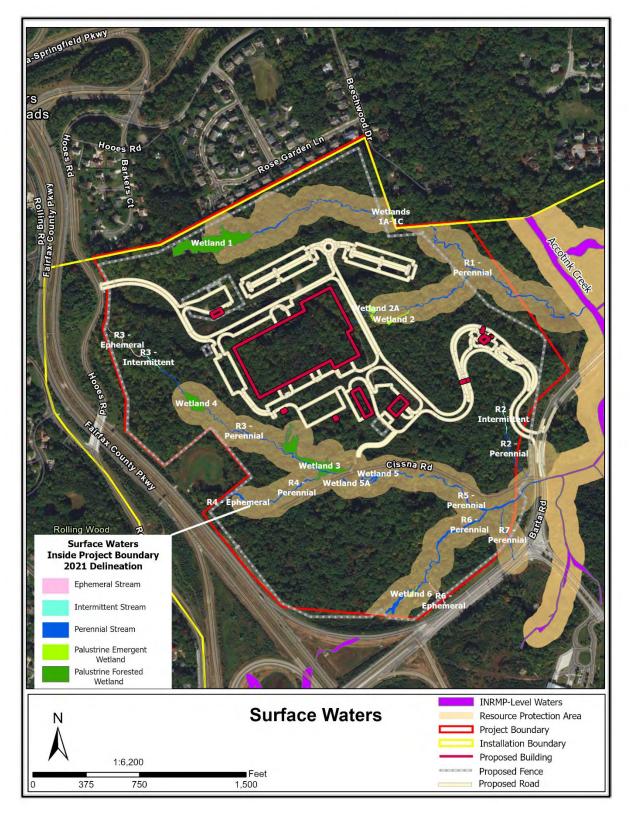
Shoreline Sanitation – The Proposed Action is not located on or near a shoreline. The Proposed Action would therefore have no impact on shoreline sanitation.

Air Pollution Control – The proposed site is located within an ozone (O₃) non-attainment area, triggering the need to analyze emissions and determine the applicability of General Conformity Rule under the Clean Air Act. A construction emissions estimate indicates that construction and operation activity would not generate sufficient emissions to trigger a need for a full General Conformity Analysis.

The estimated emissions associated with the construction and operation of this project are very low. The temporary impacts to air quality would be short-term, minor impacts that would not be regionally or locally significant.

Coastal Lands Management – Resource Protection Areas (RPAs) are associated with Accotink Creek, its tributaries, and its associated tidal and non-tidal wetlands. Short-term, minor, adverse impacts to the RPAs associated with unnamed tributaries to Accotink Creek and the adjacent riparian, non-tidal wetlands are anticipated in the project area (see Figure 2). Avoidance and minimization of impacts to this area would be fully considered as the project design progresses. Any unavoidable impacts would be addressed through applicable permitting pursuant to Section 404 of the Clean Water Act and the Virginia Water Protection Permit Program (9 VAC 25-210-10 et seq.). Appropriate temporary erosion and sediment control measures and stormwater BMPs would be employed at the construction site to minimize downstream impacts to Accotink Creek from earth disturbance associated with construction activities.

C3 Summary of Findings


Based on the above analysis, which is elaborated on in the EA, Fort Belvoir personnel would: (1) ensure that the construction contractor uses and maintains appropriate temporary erosion and sediment controls; and (2) obtain the requisite permits and approvals. The Army finds that the proposed distribution center construction is fully consistent to the maximum extent practicable with the federally approved enforceable provisions of the Virginia CRMP, pursuant to the Coastal Zone Management Act of 1972, as amended and in accordance with 15 CFR 930.30.

Pursuant to 15 CFR Part 930.41, the Virginia CRMP has 60 days from receipt of this letter in which to concur with or object to this Consistency Determination, or to request an extension, in writing, under 15 CFR Part 930.41(b). Virginia's concurrence will be presumed if its response is not received by the Army on the 60th day from receipt of this determination. The state's response should be sent to U.S. Army Garrison Fort Belvoir, 9430 Jackson Loop, Suite 200, Fort Belvoir, VA 22060-5116.

Joshua P. SeGraves Colonel, US Army Commanding

Figure 1: Proposed Project Location at FBNA

Figure 2: Surface Waters

APPENDIX D – FOREST STAND DELINEATION STUDY

FOREST STAND DELINEATION REPORT FOR PROPOSED DISTRIBUTION CENTER FORT BELVOIR NORTH AREA FORT BELVOIR, VIRGINIA

DECEMBER 2021

PREPARED FOR: U.S. ARMY CORPS OF ENGINEERS BALTIMORE DISTRICT, RSFO

PREPARED BY: U.S. ARMY CORPS OF ENGINEERS BALTIMORE DISTRICT, PLANNING DIVISION 2 HOPKINS PLAZA BALTIMORE, MARYLAND 21201

Daniel R. Cockerham, Maryland Department of Natural Resources Forest Conservation Qualified Professional ISA Certified Arborist

TABLE OF CONTENTS

I.	INTRODUCTION	1
II.	SITE DESCRIPTION	1
III.	METHODOLOGY	1
IV.	RESULTS	2
S	Γανα 1	2
S	Land 2	3
S		4
S	ΓAND 4	4
S	ΓAND 5	5
S	ΓΑΝD 6	5
S	ΓΑΝΟ 3. ΓΑΝΟ 4. ΓΑΝΟ 5 ΓΑΝΟ 6. ΓΑΝΟ 7	6
S	ΓAND 8	7
V. C	ONCLUSIONS	7

- Appendix A Forest Stand Mapping
- Appendix B Field Sampling Data Sheets

Appendix C - Photographs

FOREST STAND DELINEATION REPORT FOR PROPOSED DISTRIBUTION CENTER FORT BELVOIR NORTH AREA

I. Introduction

A project proponent proposes to design and construct a new distribution center on Fort Belvoir North Area (FBNA), Fort Belvoir, Fairfax County, Virginia. The facility will include a two-story warehouse building with associated parking, stormwater management facilities, and infrastructure. The building will provide warehouse storage, vehicle maintenance, and shipping and receiving areas. It will also contain offices, open office space, conference rooms, storage spaces and support spaces to serve approximately 90 occupants.

II. Site Description

The proposed project area is approximately 180 acres, is currently forested, and situated in the northwestern half of FBNA, west of Accotink Creek. It is bounded by Accotink Creek to the east, Barta Road to the south, a residential neighborhood to the north, and Fairfax County Parkway to the west (Appendix A).

FBNA is located near the transition between the Eastern Piedmont and the Coastal Plain Physiographic Provinces and therefore exhibits characteristics of both. Piedmont areas consist largely of Precambrian metamorphic and Cambrian igneous rock formations, whereas Coastal Plain areas consist of an eastward thickening wedge of unconsolidated sediments of gravel, sand, silt, and clay from the Cretaceous to Tertiary periods (Fort Belvoir 2014).

The topography of FBNA is gently rolling, except for steep slopes bordering Accotink Creek. Accotink Creek enters FBNA from the north at an elevation of approximately 120 feet above mean sea level and descends to an elevation of approximately 100 feet above mean sea level before exiting FBNA to the south. Steep slopes rise from both the eastern and western banks of Accotink Creek and its unnamed tributaries located to the west within the proposed project area. The grades on the slopes range between 20 and 30 percent at most locations (Fort Belvoir 2014).

Elevation of the site ranges from 300 to 200 feet above mean sea level and slopes slightly from northwest to southeast. Soils within western FBNA include Beltsville silt loam (7B), the Sassafras-Marumsco Complex (91D) and Nathalie gravelly loam (79C).

III. Methodology

Prior to field investigations, topographic maps, soil surveys and digital aerial photographs were reviewed to identify probable forest stand boundaries. A full Forest Stand Delineation was conducted on 17 and 23-25 August 2021. A 1/10-acre fixed plot sampling technique was used to assess forest stand conditions and forest structure. Forest stands were distinguished primarily by differences in species composition and successional stage. Sample plots were chosen so as to be evenly distributed throughout the stand. A stick flag was placed in the center of each plot and along the perimeter of the circular plot in each of the four cardinal directions. The plot center was marked in the field with red

flagging and the stand and plot number labeled with a black marker. All additional forest stand and forest structure procedures for data collection follow guidelines of the Maryland State Forest Conservation Technical Manual (MDNR 1997). Although this method is not a regulatory requirement in Virginia, it provides an efficient and comprehensive approach for cataloging and prioritizing forest resources. Forest stands are ranked as Priority 1, 2, or 3 according to the guidelines in the Technical Manual. Priority 1 stands have wetlands, specimen trees of 30" diameter at breast height (dbh) or greater, intermittent or perennial streams, steep slopes, and/or other sensitive areas. Priority 2 may contain some elements listed for Priority 1 and/or have a designation of priority in a local land use plan, local forest conservation program, or other criteria adopted by a local forest conservation program. Priority 3 areas have evidence of increasing levels of human disturbance compared to Priority 1 and 2 areas. In some cases a stand can have a sensitive area within its boundaries, but be a low quality stand based upon quality of vegetation, presence of invasive species or other values. This is noted in the stand descriptions where applicable.

Stand priority rankings help inform decisions on what areas should receive more consideration for on-site preservation and influence how an overall development site is designed.

IV. Results

Eight forest stands were identified within the study area (Appendix A). Dominant cover types include tulip poplar/red maple and oak/hickory. Stand variations result from changes in topographic position, degree of slope, and amount and type of historical human disturbance. Forest stand conditions and forest structure were assessed at sample plots within the stand as detailed in the following stand descriptions (see also Appendix B). The Forest Stand Mapping in Appendix A depicts the approximate location of the sampling plots and boundary of forest cover type within the study area. A brief description of each forest stand follows, and representative photographs can be found in Appendix C:

Stand 1

Sample Plots:	4
Successional Stage:	Mature
Priority:	1
Cover Type:	Tulip Poplar

Stand 1 is dominated by tulip poplar (*Liriodendron tulipifera*) of size class 20-29.9" diameter at breast height (dbh), with approximately 80% canopy closure. The plots within this stand contain a specimen-sized (>30" dbh) tulip poplar and scarlet oak (*Quercus coccinea*). Trees in the sub-canopy included red maple (*Acer rubrum*), American beech (*Fagus grandiflora*), black gum (*Nyssa sylvatica*), Northern red oak (*Quercus rubrum*), mockemut hickory (*Carya tomentosa*), sassafras (*Sassafras albidum*), American holly (*Ilex opaca*) and sweetgum (*Liquidambar styraciflua*). The understory from 3' to 20' tall averages 80% coverage, and includes mountain laurel (*Kalmia latifolia*), black gum, American holly, American beech, sweetgum and muscadine grape vine (*Vitus rotundifolia*). Common herbaceous and woody species 0' to 3' tall consist of mountain laurel, partridgeberry (*Mitchella repens*), common greenbrier (*Smilax rotundifolia*), glaucous-leaved greenbrier (*Smilax glauca*), Virginia creeper (*Parthenocissus quinquefolia*), highbush blueberry (*Vaccinium corymbosum*), hay-scented fern (*Dennstaedtia punctilobula*), stout wood reed (*Cinna arundinacea*), Jack-in-the-pulpit (*Arisaema triphyllum*), false nettle (*Boehmeria cylindrica*), and poison ivy (*Toxicodendron radicans*) with approximately 100% coverage. Invasive species observed in the stand were multiflora rose (*Rosa multiflora*), Asiatic bittersweet (*Celastrus orbiculatus*), Japanese stilt grass (*Microstegium vimineum*) and Japanese honeysuckle (*Lonicera japonica*) with approximately 80% coverage. The wildlife value of the stand is moderate due to the presence of cover and forage, mostly in the form of soft mast and seeds, with water sources available in adjacent areas. The stand is rated Priority 1 as there are wetlands within its boundary and it contains specimen trees. It is contiguous with other forest stands found within the western half of FBNA but separated from off-site forests by the Fairfax County Parkway and residential/commercial development.

Environmental Features

Stand 1 contains wetlands and specimen trees, with only one plot (out of 4) containing a high occurrence of invasive species. Adjacent land uses include neighborhoods, roads (including Fairfax County Parkway and Barta Road), and contiguous forest.

Stand 2

Sample Plots:	1
Successional Stage:	Mature
Priority:	1
Cover Type:	Tulip Poplar

Stand 2 is dominated by tulip poplar (Liriodendron tulipifera) of size class >30" dbh, with approximately 80% canopy closure. Plot 1 contains two specimen-sized (>30" dbh) tulip poplar. Trees in the sub-canopy included red maple (Acer rubrum) and American beech (Fagus grandiflora). The understory from 3' to 20' tall averages 20% coverage, and includes sweetgum (Liquidambar styraciflua) and pawpaw (Asimina triloba). Common herbaceous and woody species 0' to 3' tall consist of common greenbrier (Smilax rotundifolia), Virginia creeper (Parthenocissus quinquefolia), highbush blueberry (Vaccinium corymbosum), huckleberry (Vaccinium membranaceum), wild yam (Dioscorea villosa), Jack-in-the-pulpit (Arisaema triphyllum), false nettle (Boehmeria cylindrica), cinnamon fern (Osmundastrum cinnamomeum) and fan clubmoss (Diphasiastrum digitatum) with approximately 100% coverage. Invasive species observed in the stand were Asiatic bittersweet (Celastrus orbiculatus), Japanese stilt grass (Microstegium vimineum) and Japanese honeysuckle (Lonicera japonica) with approximately 5% coverage. The wildlife value of the stand is moderate due to the presence of cover and forage, mostly in the form of hard mast and seeds, with water sources available in adjacent areas. The stand is rated Priority 1 as it contains specimen trees, a perennial stream and a low occurrence of invasive species. It is contiguous with forest stands found within the western half of FBNA and very similar to Stands 1 and 3.

Environmental Features

Stand 2 contains specimen trees, a perennial stream and a low occurrence of invasive species. Adjacent land uses include neighborhoods, roads, and contiguous forest.

Stand 3

Sample Plots:	1
Successional Stage:	Mature
Priority:	2
Cover Type:	Tulip Poplar

Stand 3 is co-dominated by tulip poplar (*Liriodendron tulipifera*), white oak (*Quercus alba*) and scarlet oak (*Quercus coccinea*) of size class 20-29.9" dbh, with approximately 100% canopy closure. Trees in the sub-canopy included red maple (*Acer rubrum*), American beech, and black gum (*Nyssa sylvatica*). The understory from 3' to 20' tall averages 100% coverage and includes black gum and muscle wood (*Carpinus caroliniana*). Common herbaceous and woody species 0' to 3' tall consist of common greenbrier (*Smilax rotundifolia*), huckleberry (*Vaccinium membranaceum*), rattlesnake plantain (*Goodyera oblongifolia*), Indian cucumber root (*Medeola virginiana*), Solomon's seal (*Polygonatum* spp.), tick trefoil (*Desmodium* spp.), and fan clubmoss (*Diphasiastrumdigitatum*) with approximately 100% coverage. No invasive species were observed in the stand. The wildlife value of the stand is moderate due to the presence of cover and forage, mostly in the form of hard mast and seeds, with water sources available in adjacent areas. The stand is rated Priority 2 as it contains a low occurrence of invasive species (none were observed). It is contiguous with forest stands found within the western half of FBNA and very similar to Stands 1 and 2.

Environmental Features

Stand 3 contains a low occurrence of invasive species. Adjacent land uses include neighborhoods, roads, and contiguous forest.

Stand 4

Sample Plots:	4
Successional Stage:	Mature
Priority:	1
Cover Type:	Tulip Poplar

Stand 4 is co-dominated by tulip poplar, white oak, black oak and red maple of size class 12-19.9" dbh, with approximately 100% canopy closure. Trees in the sub-canopy included American beech, black gum, northern red oak, southern red oak (*Quercus falcata*), American holly, sassafras and mockernut hickory. The understory from 3' to 20' tall averages 80% coverage and includes beech, black gum and holly. Common herbaceous and woody species 0' to 3' tall consist of common greenbrier, huckleberry highbush blueberry, partridgeberry, black gum, red maple, mockernut hickory, white oak, holly, mountain laurel, beech, trefoil, Indian cucumber-root (*Medeola virginiana*), saw-toothed viburnum (*Viburnum betulifolium*), Christmas fern (*Polystichum acrostichoides*) and hog peanut (*Amphicarpaea bracteata*) with approximately 40% coverage. Invasive species observed in the stand were Asiatic bittersweet and wisteria (*Wisteria sinensis*) with approximately 5-10% coverage. The wildlife value of the stand is moderate due to the presence of cover and forage, mostly in the form of hard mast and seeds, with water sources available in adjacent areas. The stand is rated

Priority 1 as it contains perennial streams, a small seep wetland, areas with steep slopes, and a low occurrence of invasive species. It is contiguous with forest stands found within the western half of FBNA.

Environmental Features

Stand 4 contains perennial streams, a small seep wetland, areas with steep slopes, and a low occurrence of invasive species. Adjacent land uses include neighborhoods, roads, and contiguous forest.

Stand 5

Sample Plots:	5
Successional Stage:	Mature
Priority:	1
Cover Type:	Oak Hickory

Stand 5 is dominated by scarlet oak of size class 20-29.9" dbh, and co-dominated by tulip poplar, northern red oak, white oak, black oak (Quercus velutina), Virginia pine (Pinus virginiana), Loblolly pine (Pinus taeda) and red maple of size class 12-19.9" dbh, with approximately 100% canopy closure. Trees in the sub-canopy included American beech, Eastern red cedar (Juniperus virginiana), and mockernut hickory. The understory from 3' to 20' tall averages 80% coverage and includes beech, mountain laurel, black gum, red maple, mockernut hickory and holly. Common herbaceous and woody species 0' to 3' tall consist of glaucous-leaved greenbrier, common greenbrier, huckleberry, highbush blueberry, partridgeberry, black gum, red maple, sassafras, white oak, holly, mountain laurel, beech, trefoil, Indian cucumber-root, saw-toothed viburnum, Virginia creeper (Parthenocissus quinquefolia), partridgeberry and pawpaw with approximately 40% coverage. Invasive species observed in the stand were Japanese stilt grass with less than 1% coverage. The wildlife value of the stand is moderate due to the presence of cover and forage, mostly in the form of hard mast and seeds, with water sources available in adjacent areas. The stand is rated Priority 1 as it contains a stream and a low occurrence of invasive species. It is contiguous with forest stands found within the western half of FBNA, but differs in species composition from Stand 4, likely a result of geomorphic position on an adjacent ridgeline.

Environmental Features

Stand 5 contains a stream and a low occurrence of invasive species. Adjacent land uses include neighborhoods, roads, and contiguous forest.

Stand 6

Sample Plots:	7
Successional Stage:	Mature
Priority:	1
Cover Type:	Oak Hickory

Stand 6 is co-dominated by tulip poplar, white oak, scarlet oak, red maple and Virginia pine of size class 20-29.9" dbh, with approximately 80% canopy closure. Trees in the sub-canopy included American beech, black gum, northern red oak, southern red oak, black oak, chestnut oak and mockernut hickory. The understory from 3' to 20' tall averages 60% coverage and includes beech, mountain laurel, black gum, tulip poplar, holly, sassafras and red maple. Common herbaceous and woody species 0' to 3' tall consist of highbush blueberry, huckleberry, common pogonia, sassafras, mountain laurel, willow oak, white oak, deer tongue (*Dichanthelium clandestinum*), muscle wood partridgeberry, glaucous-leaved greenbrier, and Virginia creeper with approximately 60% coverage. Invasive species observed in the stand were Japanese stilt grass with approximately 1-2% coverage. The wildlife value of the stand is moderate due to the presence of cover and forage, mostly in the form of hard mast and seeds, with water sources available in the form of two streams that join together within the stand, ultimately connecting into Accotink Creek. The stand is rated Priority 1 as it contains streams and a low occurrence of invasive species. It is contiguous with forest stands found within the western half of FBNA.

Environmental Features

Stand 6 contains streams and a low occurrence of invasive species. Adjacent land uses include neighborhoods, roads, and contiguous forest.

Stand 7

Sample Plots:	3
Successional Stage:	Mature
Priority:	1
Cover Type:	Oak Hickory

Stand 7 is dominated by one Virginia pine in size class 20-29.9" dbh, and co-dominated by Virginia pine, tulip poplar, and scarlet oak of size class 12-19.9" dbh, with approximately 70% canopy closure. Trees in the sub-canopy include black oak, northern red oak, scarlet oak, black gum, red maple and mockernut hickory. The understory from 3' to 20' tall averages 80% coverage and includes beech, mountain laurel, sassafras, and black gum. Common herbaceous and woody species 0' to 3' tall consist of highbush blueberry, huckleberry, common pogonia, sassafras, mountain laurel, willow oak (*Ouercus phellos*), white oak, deer tongue, black gum, red maple, holly, muscle wood, hay-scented fern, common greenbrier, glaucous-leaved greenbrier, saw-tooth viburnum, (Viburnum dentatum) Virginia pine and Indian cucumber-root creeper with approximately 50% coverage. Invasive species observed in the stand were Japanese stilt grass with approximately 2% coverage. The wildlife value of the stand is moderate due to the presence of cover and forage, mostly in the form of hard mast and seeds, with water sources available in the form of an unnamed tributary stream that connects into Accotink Creek off-site. The stand is rated Priority 1 as it contains streams/wetlands and a low occurrence of invasive species. The slopes adjacent to the riparian zone of the unnamed tributary to Accotink Creek were identified as suitable habitat for the federally-endangered small-whorled pogonia (SWP) (Isotria medeoloides) during a July 21,2021 site visit by a biologist certified for SWP surveys. While this designation is not synonymous with critical habitat, it should be considered in the ranking process and subsequent decisions for on-site preservation. The stand is contiguous with forest stands found within the western half of FBNA.

Environmental Features

Stand 7 contains a stream and riparian wetlands, suitable habitat for SWP and a low occurrence of invasive species. Adjacent land uses include neighborhoods, roads, and contiguous forest.

Stand 8

Sample Plots:	3
Successional Stage:	Mature
Priority:	1
Cover Type:	Oak Hickory

Stand 8 is dominated by tulip poplar in size classes >30" dbh and 20-29.9" dbh with approximately 70% canopy closure. Trees in the sub-canopy include American beech, black gum, northern red oak, southern red oak, mockernut hickory, Virginia pine, scarlet oak, willow oak and red maple. The understory from 3' to 20' tall averages 100% coverage and includes beech, mountain laurel, black gum, and red maple. Common herbaceous and woody species 0' to 3' tall consist of highbush blueberry, huckleberry, common greenbrier, cinnamon fern, Loblolly pine, Virginia pine, hay-scented fern, Christmas fern, Virginia creeper, sensitive fern, fan clubmoss, white oak, sweet gum, muscle wood partridgeberry, glaucous-leaved greenbrier, and Virginia creeper with approximately 70% coverage. Invasive species observed in the stand were Japanese stilt grass and Japanese honeysuckle with approximately 30% coverage. The wildlife value of the stand is moderate due to the presence of cover and forage, mostly in the form of hard mast and seeds, with water sources available in adjacent areas. The stand is rated Priority 1 as it contains specimen trees, a stream and wetlands, and a somewhat low occurrence of invasive species. The slopes adjacent to the unnamed stream support suitable habitat for the SWP, contiguous with the habitat found in Stand 7. The stand is contiguous with forest stands found within the western half of FBNA.

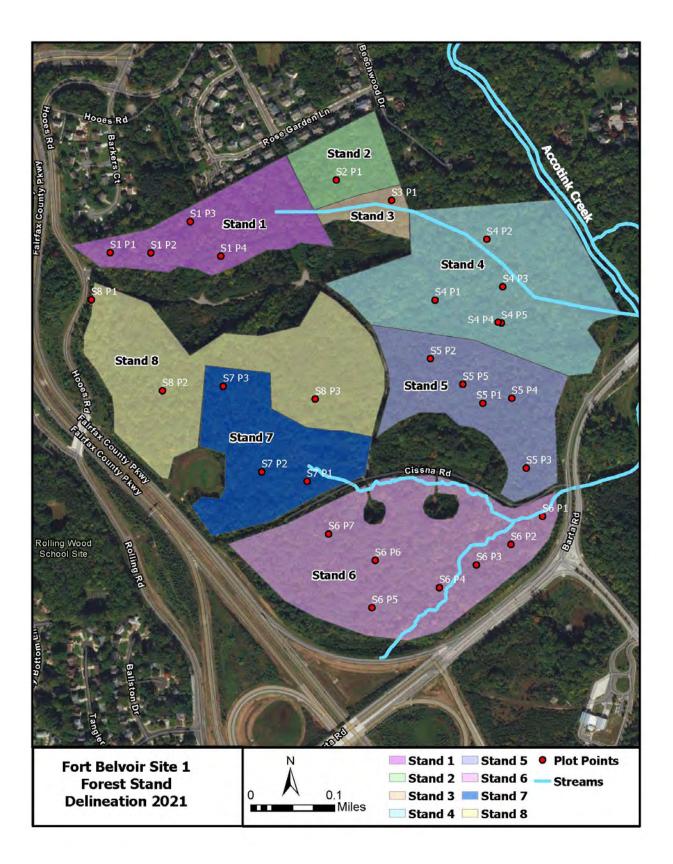
Environmental Features

Stand 8 contains specimentrees, a stream and wetlands, suitable SWP habitat and a low occurrence of invasive species. Adjacent land uses include neighborhoods, roads, and contiguous forest.

V. CONCLUSIONS

Eight forest stands were delineated and assessed on the site. The two dominant cover types included tulip poplar/red maple and oak-hickory. Areas of high previous disturbance associated with former ranges were dominated by a thick shrub-level coverage of Virginia pine (and not included in any stands). Unused bunker sites off Cissna Road are also characterized by a virtual monoculture of young Virginia pine. Remaining forested areas support mature trees and most contain wetlands, perennial streams and steep slopes. Invasive species coverage is high in some areas of the ground cover layers but overall remains relatively low.

Stands 1, 2 and 4-8 rated Priority 1 and Stand 3 was rated Priority 2 (summarized in table below). Priority 1 stands should be given particular consideration for on-site preservation where practicable. Stands 1 and 2 provide an additional service as a visual buffer between the proposed project site and the adjacent residential neighborhood to the north. Stand 4 provides a continuous forested habitat that connects directly into the Accotink Creek floodplain off-site. Stand 6 has streams running through it and also provides a good visual buffer between the project site and adjacent developed areas. Stands 7 and 8 support a stream, wetlands and suitable habitat for SWP, important when considering steps to eliminate or minimize potential adverse effects of the project in accordance with the Endangered Species Act (ESA).


Stand	Low Invasive Coverage	Specimen Trees	Wetlands/ Stream	Successional Stage	Ranking
1	Y	Y	Y	Mature	1
2	Y	Y	Y	Mature	1
3	Y	Ν	Ν	Mature	2
4	Y	Ν	Y	Mature	1
5	Y	Ν	Y	Mature	1
6	Y	Ν	Y	Mature	1
7	Y	Ν	Y	Mature	1
8	Y	Y	Y	Mature	1

REFERENCES

- Eyre, F.H. 1980. <u>Forest Cover Types of the United States and Canada</u>. Society of American Foresters, Washington, D.C. 148 pp.
- Maryland Dept. of Natural Resources (MDNR), 3rd ed., 1997. <u>State Forest Conservation Technical</u> <u>Manual</u>. Dept. of Natural Resources, Annapolis, Maryland. Available online at <u>https://mdstatedocs.slrc.info/digital/collection/mdgov/id/11130/</u>.
- U.S. Army Garrison Fort Belvoir (Fort Belvoir). 2014. Draft Environmental Impact Statement, Real Property Master Plan Update and Short-term Projects, US Army Garrison Fort Belvoir, Fairfax County, Virginia. Prepared by AECOM.
- U.S. Department of Agriculture (USDA) Natural Resources Conservation Service. 2021. Web Soil Survey. Available online at <u>http://websoilsurvey.nrcs.usda.gov/</u>.
- U.S. Fish and Wildlife Service. 2020. National Wetlands Inventory, Conterminous 48 States. Washington, D.C. Updated continuously.

APPENDIX A

Forest Stand Mapping

APPENDIX B

Field Sampling Data Sheets

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR	
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 1	Plot #: 1
Forest Cover Type: Tulip poplar	Date: 17 August 2021	
Plot Size: 1/10 Acre (37.5' radius)		

Basal Area in Square Feet per Acre: 90			-		SIZ		SS O	F TRE	ES >2	0' HEI	GHT	WITH	IN SA	MPLE	PLO	т		
	Νι	umber	of	Νι	Imber	-		• • • •		-	mber			···		Average		
	Tre	es 2-	5.9"	Tre	es 6-1	1.9"	Num	ber of	Trees	Tree	s 20-2	29.9"	Nu	mber	of	Tree Height		
TREE SPECIES		dbh	_		dbh		12-	·19.9"	dbh		dbh		Trees	s >30'	" dbh			
Crown Position	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	()	Total	
¹ Tulip poplar			1			1		2		6							10	
² Red maple						1											1	
³ American beech			2														2	
⁴ Mockernut hickory			1			1											2	
⁵ Black gum			3														3	
6																	0	
7																	0	
8																	0	
9																	0	
Total Number of Trees per Size Class			7			3			2			6			-		10	
Number & Size of			1			3			2			0		18				
Standing Dead Trees																	0	
List of Woody Plant S	Specie	s 3'-2	0':				Ca	anopy	Closu	re:						Plot Succession	al Stage:	
American holly and beech	۱					С	Ν	ш	s	W	%	per Pl	ot (all la	ayers):				
						Y	Y	Y	Υ	Y	100		59	%		Matu	ire	
List of Understory Sp	ecies	0'-3':				I	Under	story	Cover	3'-20'		List o	of Maj	or Inv	vasive	Species		
mountain laurel, partridge	eberry,	bitters	weet, ł	nighbu	sh	С	Ν	E	S	W	%	per F	Plot (Å	ll Lay	ers):			
blueberry, Virginia creepe						Y	Y	Y	Y	Y	100	Asiat	ic bitters	sweet, .	Japane	se honeysuckle, J	apanese stilt	
hay-scented fern, commo	on gree	nbrier,	poisor	n ivy (c		-	-		-						3	Irass		
Rare, etc. Species?	No					Herb	aceou	is & V	loody (Cover	0'-3':	HABIT	AT: Wh	at spe	cies pr	esent?		
Specimen Trees?	No					С	Ν	E	s	W	%		tailed d					
Historic Sites?	No					Y	Y	Y	Y	Y	100	Habita	nt size, I	ocatio	n, conf	iguration:		
Disease?	ase? No								•	•			sta	nd surr	ounded	I by contiguous for	rest	
Insects/Infestation?									oody D							i by contiguous to		
Exotic Plants?	Yes					С	Ν	E	S	W	%	Wildlif	e cove	/food/\	water?			
Leaf litter? light						N	N	Y	Y	Y	60	food a	nd cove	r, wetla	ands pre	esent in adjcent st	ands	
Downed woody debris: light								•	•	-		Stand	corrido	or/patcl	h?	Patch		
FUNCTION: Where is stand	d in rela	ation to	sensit	ive are	as on s	site?	adjac	ent to	foreste	ed wet	lands							
Comments:																	-	

Understory (continued): maple leaf viburnum, black gum, Virginia pine and sassafras

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR	
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 1	Plot #: 2
Forest Cover Type: Tulip poplar	Date: 17 August 2021	
Plot Size: 1/10 Acre (37.5' radius)		

Basal Area in Square Feet per Acre: 100	SIZE CLASS OF TREES >20' HEIGHT WITHIN SAMPLE PLOT													1			
	Νι	umber	r of	Nu	mber	-		<u> </u>		-	imber					Average	
	Tre	ees 2-	5.9"	Tree	es 6-1	1.9"	Num	ber of	f Trees	Tree	s 20-:	29.9"	Νυ	ımber	of	Tree Height	
TREE SPECIES		dbh	ļ		dbh			-19.9"	dbh		dbh		Trees	s >30'	' dbh	(ft)	
Crown Position	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other		Total
¹ Tulip poplar			2		l	1		1					1				5
² Red maple						2											2
³ American beech			1														1
⁴ Mockernut hickory			1														1
⁵ Black gum			4														4
⁶ Sassafras			1														1
⁷ Black oak								1									1
⁸ American holly			1													1	
9												0					
Total Number of Trees			10			2			2						4		16
per Size Class Number & Size of	╂───		10	┣───		3	 		2	 		0	 		1		16
Standing Dead Trees		1	ļ			ļ											1
List of Woody Plant S	Specie	es 3'-2	:0':				Ca	anopy	Closu	re:						Plot Succession	al Stage:
mountian laurel and black	k gum					С	Ν	Ε	S	W	%	per Plot (all layers):					
					l	Y	Y	Y	Υ	Υ	100		5-1	0%		Matu	re
List of Understory Sp	Decies	0'-3' :				· ·	Under	story	Cover	3'-20'	:	List (of Maj	or Inv	asive	Species	
partridgeberry, Virginia cr	reeper,	, highbu	ush blu			С	Ν	E	S	W	%		Plot (Å			•	
Rhus spp., common gree				y, glauc	cous-	Y	Y	Y	Y	Y	100						arace
leaved greenbrier, black of		ech, (c	cont.)				-									•	yrass
Rare, etc. Species?	No								Voody		0'-3':	HABIT	AT: Wh	at spe	cies pr	esent?	
Specimen Trees?	Yes					С	Ν	E	S	W	%		tailed d	,			
Historic Sites?	No					Y	Ν	Y	Y	Y	80	Habita	lt size, l	locatio	n, conf	iguration:	
Disease?	No											4	sta	nd surr	ounded	I by contiguous for	rest
Insects/Infestation?	No				·				oody D		1	<u> </u>				.,	
Exotic Plants?	Yes					С	Ν	E	S	W	%	-	e covei				
Leaf litter?	light					Ν	Ν	Ν	Ν	Ν	0			,		esent in adjcent sta	ands
Downed woody debris:	light		<u> </u>			Ļ							corrido	or/patch	n?	Patch	
FUNCTION: Where is stand	d in rela	ation to	sensit	live area	<u>រs on ទ</u>	ite?	adjac	ent to	foreste	d wet	lands						

Comments:

Tulip poplar specimen measured at 40" dbh

Understory (continued): maple leaf viburnum, poison ivy, white wood aster

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR	
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 1	Plot #: 3
Forest Cover Type: Tulip poplar	Date: 17 August 2021	
Plot Size: 1/10 Acre (37.5' radius)		

SIZE CLASS OF TREES 20' HEIGHT WITHIN SAMPLE PLOT Number of Trees 5-1.9" Average Trees 20-29.9" Average Trees 20-29.9" TREE SPECIES odbh Average Trees 20-29.9" Number of Trees 5.0" Average Trees 20-29.9" Interest SPECIES odbh Other Dom CoD Other	Basal Area in Square Feet per Acre: 100					SIZ	F CL/	ASSO		FFS >2	יסי HE	IGHT	WITH		MPLE	PLO	т	
Trees 2-5.9° dbhTrees 6-11.9° dbhNumber of Trees Trees 20-29.9° dbhNumber of Trees Trees 20-29.9° dbhTrees 20-29.9° Trees 20-29.9° dbhTree Height Trees 20-29.9° dbhCrown Position 1Dom CoDOolOolOolOolOolTrees 0.0°Trees totalTrees 20-29.9° totalNumber of Trees Trees 20-29.9° dbhTree Height Trees 20-29.9° dbhTree Height Trees 20-29.9° dbhTree Height Trees 20-29.9° 	reet per Acre. 100	N	umber	r of	Nu				<u> </u>						1911			
TREE SPECIES dbh dbh 12-19.9" dbh dbh Trees >30" dbh (tt) Torown Position Dom CoD Other Dom CoD <	1	-		-				Num	ber o'	f Trees			-	Νu	umber	r of	U U	
Crown Position Dom CoD Other Dom Dom CoD Other Dom	TREE SPECIES																-	
2 Red maple 1 1 1 1 1 3 3 Sweet gum 1		Dom			Dom						Dom							Total
Rect maple I	¹ Tulip poplar					\Box			2	[]	1							3
Sweet gum I	Red maple			1		\Box'	1			\Box'		1						3
INDOMENTIAL HIGKOLY 2 1	Sweet gum			1		<u> </u>			$\left[\right] $	['								1
Nontretin red dak I	Mockernut nickory			2		\Box				1								3
7 0 0 0 8 0 0 0 9 0 0 0 9 0 0 0 101 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 101 0 0 0 9 0 0 0 101 0 0 0 9 0 0 0 101 0 0 0 101 0 0 0 101 0 0 0 101 0 0 0 101 0 0 0 101 0 0 0 101 0 0 0 101 0 0 0 101 0 0 0 101 0 0 0 101 0 0 0 <	Northern red oak					\Box'	1			\Box								1
8 0 0 0 9 0 0 0 9 0 0 0 10tal Number of Trees per Size Class 4 2 3 2 11 Number of Trees per Size Class 4 2 3 2 11 Standing Dead Trees 3 3 6 6 List of Woody Plant Species 3'-20': beech, sweet gum, holly, ironwood, muscadine grape C N E S W % N Y Y N Y 60 90% Mature List of Understory Species 0'-3': Understory Cover 3'-20': false nettle, stout wood reed, Jack-in-the-pulpit, common greenbrier, sensitive fern, Virginia creeper, Virginia chain fern, hog peanut, wild yam, cinnamon fern C N E S W % Rare, etc. Species? No Herbaceous & Woody Cover 0'-3': Isease? HABITAT: What species present? White-tailed deer, raccoon Historic Sites? No V Y Y Y Y Y Y Y Y N Disease? No Downed Woody Debris: Exotic Plants? Yes <td></td> <td></td> <td></td> <td></td> <td></td> <td>\Box</td> <td></td> <td></td> <td></td> <td>\Box</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>						\Box				\Box								0
9 Image: constraint of the second standing of						\Box'				\Box'								0
Total Number of Trees 0 per Size Class 4 2 3 2 11 Number & Size of Standing Dead Trees 3 3 6 11 List of Woody Plant Species 3'-20': beech, sweet gum, holly, ironwood, muscadine grape C N E S W % N Y Y N Y 60 90% Mature List of Understory Species 0'-3': Understory Cover 3'-20': List of Major Invasive Species Mature false nettle, stout wood reed, Jack-in-the-pulpit, common greenbrier, sensitive fern, Virginia creeper, Virginia chain fern, hog peanut, wild yam, cinnamon fern C N E S W % Rare, etc. Species? NO Herbaceous & Woody Cover 0'-3': Habitaric Sites? Herbaceous & Woody Debris: Japanese honeysuckle, Japanese still grass, Asisatic bittersweet, multiflora rose Bistoric Sites? NO Y Y Y Y Y Y Y white-tailed deer, raccoon Historic Sites? NO Downed Woody Debris: Stand surrounded by contiguous forest stand surrounded by contiguous forest List of Plants? Yes C N E						\Box'				\Box								0
per Size Class 4 2 3 2 11 Number & Size of Standing Dead Trees 3 3 6 List of Woody Plant Species 3'-20': beech, sweet gum, holly, ironwood, muscadine grape C N E S W % Percent of Invasive Cover per Plot (all layers): Mature List of Understory Species 0'-3': Understory Cover 3'-20': false nettle, stout wood reed, Jack-in-the-pulpit, common greenbrier, sensitive fern, Virginia creeper, Virginia chain fern, hog peanut, wild yam, cinnamon fern C N E S W % per Plot (All Layers): Japanese honeysuckle, Japanese stilt grass, Asisatic bittersweet, multiflora rose Rare, etc. Species? No Herbaceous & Woody Cover 0'-3': Specimen Trees? HABITAT: What species present? Mistoric Sites? No Y Y Y Y Y y stand surrounded by contiguous forest Insects/Infestation? No Y Y Y N 40 food and cover, wetlands present in adjoent stands Downed woody debris: light N N Y Y N 40 food and cover, wetlands present in adjoent stands Stand corridor/patch? Patch N N				['		\Box				\Box								0
Standing Dead Trees 3 3 6 List of Woody Plant Species 3'-20': Canopy Closure: Percent of Invasive Cover Per Plot (all layers): Mature beech, sweet gum, holly, ironwood, muscadine grape C N E S W % Percent of Invasive Cover Porto (all layers): Mature List of Understory Species 0'-3': Understory Cover 3'-20': List of Major Invasive Species per Plot (All Layers): Japanese honeysuckle, Japanese stilt grass, Asisatic bittersweet, multiflora rose greenbrier, sensitive fern, Virginia creeper, Virginia chain fern, hog peanut, wild yam, cinnamon fern Y Y Y Y Japanese honeysuckle, Japanese stilt grass, Asisatic bittersweet, multiflora rose Rare, etc. Species? No Herbaceous & Woody Cover 0'-3': HABITAT: What species present? Mitte-tailed deer, raccoon Y Y Y Y Y Y Disease? No Downed Woody Debris: Stand surrounded by contiguous forest Exotic Plants? Yes C N E S W % List of Major Invasive Cover Yes C N E S W %	per Size Class			4			2			3			2					11
beech, sweet gum, holly, ironwood, muscadine grape C N E S W % per Plot (all layers): Mature List of Understory Species 0'-3': Understory Cover 3'-20': List of Major Invasive Species Mature false nettle, stout wood reed, Jack-in-the-pulpit, common greenbrier, sensitive fern, Virginia creeper, Virginia chain fern, hog peanut, wild yam, cinnamon fern C N E S W % per Plot (All Layers): Japanese honeysuckle, Japanese stilt grass, Asisatic bittersweet, multiflora rose Rare, etc. Species? No Herbaceous & Woody Cover 0'-3': HABITAT: What species present? Specimen Trees? No Y Y Y Y Y Y Habitat size, location, configuration: Disease? No Y <t< td=""><td>Standing Dead Trees</td><td></td><td></td><td>!</td><td></td><td></td><td>!</td><td></td><td></td><td>!</td><td></td><td>3</td><td></td><td></td><td></td><td></td><td></td><td>•</td></t<>	Standing Dead Trees			!			!			!		3						•
beech, sweet gum, holly, ironwood, muscadine grape C N E S W % per Plot (all layers): Mature List of Understory Species 0'-3': Understory Cover 3'-20': List of Major Invasive Species Mature false nettle, stout wood reed, Jack-in-the-pulpit, common C N E S W % per Plot (All Layers): Japanese still grass, Asisatic greenbrier, sensitive fern, Virginia creeper, Virginia chain fern, hog peanut, wild yam, cinnamon fern Y Y Y Y Y Japanese honeysuckle, Japanese still grass, Asisatic bittersweet, multiflora rose Specimen Trees? No Herbaceous & Woody Cover 0'-3': HABITAT: What species present? Mistoric Sites? No Y Y Y Y Y Y Y y stand surrounded by contiguous forest Insects/Infestation? No Y Y Y Y Y N 40 Downed woody debris: light N N Y Y N 40 food and cover, wetlands present in adjcent stands Toric Sites? N N N Y Y N A0								Ca	anopy								Plot Succession	al Stage:
List of Understory Species 0'-3':Understory Cover 3'-20':List of Major Invasive Speciesfalse nettle, stout wood reed, Jack-in-the-pulpit, common greenbrier, sensitive fern, Virginia creeper, Virginia chain fern, hog peanut, wild yam, cinnamon fernCNESW%YYYYYY100Japanese honeysuckle, Japanese stilt grass, Asisatic bittersweet, multiflora roseRare, etc. Species?NoHerbaceous & Woody Cover 0'-3':HABITAT: What species present? white-tailed deer, raccoonRare, etc. Species?NoCNESW%Historic Sites?NoYYYY100Habitat size, location, configuration: stand surrounded by contiguous forestDisease?NoDowned Woody Debris:SW%Exotic Plants?YesCNESW%Leaf litter?NNNYYN40food and cover, wetlands present in adjcent stands Stand corridor/patch?PatchFUNCTION: Where is stand in relation to sensitive areas on site?forested wetlandForested wetlandForested wetland	beech, sweet gum, holly,	ironwo	od, mu	Jscadir	ne grap	e				-		%	per Pl	ot (all la	ayers):			
false nettle, stout wood reed, Jack-in-the-pulpit, common greenbrier, sensitive fern, Virginia creeper, Virginia chain fern, hog peanut, wild yam, cinnamon fern C N E S W % per Plot (All Layers): Japanese honeysuckle, Japanese stilt grass, Asisatic bittersweet, multiflora rose Rare, etc. Species? No Herbaceous & Woody Cover 0'-3': Specimen Trees? HABITAT: What species present? white-tailed deer, raccoon Historic Sites? No C N E S W % Disease? No Y Y Y Y Y Y y Insects/Infestation? No Downed Woody Debris: Wildlife cover/food/water? stand surrounded by contiguous forest Leaf litter? N N N Y Y N 40 Downed woody debris: light N N Y Y N 40 FUNCTION: Where is stand in relation to sensitive areas on site? forested wetland forested wetland Patch						ا ا												ire
greenbrier, sensitive fern, Virginia creeper, Virginia chain fern, hog peanut, wild yam, cinnamon fernYYYYYYIonJapanese honeysuckle, Japanese stilt grass, Asisatic bittersweet, multiflora roseRare, etc. Species?NoHerbaceous & Woody Cover 0'-3': Specimen Trees?HABITAT: What species present? white-tailed deer, raccoonHistoric Sites?NoCNESW%Historic Sites?NoYYYYY100Disease?NoYYYYY100Insects/Infestation?NoDowned Woody Debris:Stand surrounded by contiguous forestExotic Plants?YesCNESW%Leaf litter?NNYYN40food and cover, wetlands present in adjcent stands Stand corridor/patch?PatchFUNCTION: Where is stand in relation to sensitive areas on site?forested wetlandFunctionPatch						'											- Species	
fern, hog peanut, wild yam, cinnamon fern Y </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>С</td> <td>Ν</td> <td>E</td> <td>S</td> <td>W</td> <td>%</td> <td></td> <td>•</td> <td>-</td> <td>•</td> <td></td> <td></td>							С	Ν	E	S	W	%		•	-	•		
Rare, etc. Species?NoHerbaceous & Woody Cover 0'-3':HABITAT: What species present?Specimen Trees?NoCNESW%Historic Sites?NoYYYYY100Disease?NoVYYYY100Insects/Infestation?NoDowned Woody Debris:stand surrounded by contiguous forestExotic Plants?YesCNESW%Leaf litter?NNYYYN40Downed woody debris:lightNNYYPatchFUNCTION: Where is stand in relation to sensitive areas on site?forested wetlandForested wetland					irginia (chain	Y	Y	Y	Y	Y	100	Jap	anese l		,	1 0	s, Asisatic
Specimen Trees? No C N E S W % white-tailed deer, raccoon Historic Sites? No Y Y Y Y Y Y Y 100 Habitat size, location, configuration: stand surrounded by contiguous forest Disease? No Downed Woody Debris: Wildlife cover/food/water? Exotic Plants? Yes C N E S W % Wildlife cover/food/water? Leaf litter? N N Y Y Y N 40 food and cover, wetlands present in adjcent stands Downed woody debris: light N N Y Y N 40 FUNCTION: Where is stand in relation to sensitive areas on site? forested wetland Function determine and deter							Herb	aceou	Js & V	Voody	Cover	r 0'-3'	HABIT	AT: WI	nat spe	cies pr	resent?	
Historic Sites? No Y Y Y Y Y Y Y Y Insects/Infestation; No No Stand surrounded by contiguous forest Insects/Infestation? No Downed Woody Debris: W % Wildlife cover/food/water? Exotic Plants? Yes C N E S W % Wildlife cover/food/water? Leaf litter? N N Y Y Y N 40 food and cover, wetlands present in adjcent stands Downed woody debris: light N N Y Y N 40 FUNCTION: Where is stand in relation to sensitive areas on site? forested wetland Function Patch		-				;	_								•	•		
Disease? No Y Y Y Y Y Y Y Y 100 stand surrounded by contiguous forest Insects/Infestation? No Downed Woody Debris: stand surrounded by contiguous forest stand surrounded by contiguous forest Exotic Plants? Yes C N E S W % Wildlife cover/food/water? Leaf litter? N N Y Y N 40 food and cover, wetlands present in adjcent stands Downed woody debris: light N N Y Y N 40 FUNCTION: Where is stand in relation to sensitive areas on site? forested wetland forested wetland Forested wetland		-				i	-								,		figuration:	
Insects/Infestation? No Downed Woody Debris: Exotic Plants? Yes C N E S W % Wildlife cover/food/water? Leaf litter? N N N Y Y N 40 food and cover, wetlands present in adjcent stands Downed woody debris: light N N Y Y N 40 food and cover, wetlands present in adjcent stands FUNCTION: Where is stand in relation to sensitive areas on site? forested wetland Function Function<							Y	Υ	Ϋ́	Υ ·	Y	100					•	
Exotic Plants? Yes C N E S W % Wildlife cover/food/water? Leaf litter? N N N Y Y N 40 food and cover, wetlands present in adjcent stands Downed woody debris: light N N Y Y N 40 food and cover, wetlands present in adjcent stands FUNCTION: Where is stand in relation to sensitive areas on site? forested wetland Function Function <t< td=""><td>Insects/Infestation?</td><td>No</td><td></td><td></td><td></td><td>— ,</td><td></td><td>Down</td><td>ed W</td><td>oody Γ</td><td>Jebris</td><td>,<u> </u></td><td>1</td><td>รเล</td><td>nd Sum</td><td>ounaeu</td><td>I by contiguous ior</td><td>est</td></t<>	Insects/Infestation?	No				— ,		Down	ed W	oody Γ	Jebris	, <u> </u>	1	รเล	nd Sum	ounaeu	I by contiguous ior	est
Downed woody debris: light N N Y Y N 40 Stand corridor/patch? Patch FUNCTION: Where is stand in relation to sensitive areas on site? forested wetland	Exotic Plants?	Yes					С	Ν	E	S	W	%	Wildlif	ie cove	r/food/	water?		
Downed woody debris: light Stand corridor/patch? Patch FUNCTION: Where is stand in relation to sensitive areas on site? forested wetland	Leaf litter?		N	N			N	40	food a	nd cove	er, wetla	an <u>ds pr</u> e	esent in adjcent st	ands				
	Downed woody debris:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							<u> </u>	<u> </u>		40	Stand	corrido	or/patc	h?	Patch	
Comments:	FUNCTION: Where is stand in relation to sensitive areas or						site?	forest	ted we	etland								
	Comments:																	

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR	
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 1	Plot #: 4
Forest Cover Type: Tulip poplar	Date: 17 August 2021	
Plot Size: 1/10 Acre (37.5' radius)		

	Basal Area in Square Feet per Acre: 160					SIZ	F CL/	ASSO		EES >2	0' HE	IGHT	WITH		MPLE	PLO	т	
	reet per Acre. 100	Ni	umber	r of	Νι	umber			<u></u>			umber			···		Average	
	ľ	Tre	ees 2-5	5.9"	Tre	es 6-1	1.9"	Num'	ber of	f Trees		es 20-2		Νυ	mber	of	Tree Height	
	TREE SPECIES		dbh			dbh			-19.9"		-	dbh		Tree	s >30'	" dbh		
	Crown Position	Dom	CoD	Other	Dom	CoD	Other				Dom	CoD	Other			Other		Total
1	Tulip poplar		<u> </u>	2			2		8		1							13
2	Red maple		<u> </u>	1			5											6
3	Scarlet oak		<u> </u>	<u> </u>										1				1
4	Black gum		<u> </u>	1														1
5	Southern red oak		<u> </u>	<u>[</u> !			1											1
6	Sassafras		<u> </u>	1							<u>[</u>							1
7	<u> </u>	['	<u> </u>	<u>[</u>				<u> </u>			<u>[</u>		<u> </u>					0
8			<u> </u>	<u> </u>														0
9			<u> </u>	<u>[</u>														0
L	Total Number of Trees per Size Class			5			8			8			1			1		23
Γ	Number & Size of Standing Dead Trees		1	/			I			I					<u> </u>			1
┢	ist of Woody Plant S	Specie	-	<u>,0':</u>	L		г ′	C;	anopy	Closu	re:		Perce	nt of In	vasive	Cover	Plot Succession	
F	101 01 1100 ay 1 latte	<u>pee.c</u>	<u></u>	<u>.</u>			С	N	E	S	W	%		ot (all la				
						l	Y	Y	Y	Y	Y	100	1	<5% Matu				
┢	ist of Understory Sp	ecies	0'-3':	,			<u> </u>	Under	story	Cover	3'-20':		List of Major Invasive Speci				Species	
	artridgeberry, sassafras,				er. high	bush	С	N	E	S	Ŵ	. %		Plot (A			Openice	
bl	lueberry, red maple, holl nountain laurel, hog pear	lly, NY f	fern, sv	weet gu			N	N	Y	Y	Y	60		101 (-			se stilt grass	
		No					Herb	aceou	IS & V	Voody (Cover	0'-3'	HABIT	AT: Wh	at spe	cies pr	esent?	
	Specimen Trees?	Yes					C	N	E	S	W	%		tailed d	-	-		
	listoric Sites?	No					-								,		iguration:	
	Disease?	No					Y	Ν	Y	Y	Y	80				-	-	1
Ir	nsects/Infestation?	No						Down	ed W	oody D	ebris		1	Sla	na sun	ounded	by contiguous for	est
	Exotic Plants?	Yes					С	Ν	Ε	S	W	%	Wildlif	fe covei	r/food/	water?		
L	.eaf litter?		N	Ν	Ν	Ν	Y	20	food a	nd cove	r, wetla	inds pre	esent in adjcent sta	ands				
D	owned woody debris:	light	_	_								20	Stand	corrido	or/patcl	h?	continuous for	rest
	•							6	tod we	ام مر م ا 4 م								
F١	UNCTION: Where is stand	d in relະ	ation to	sensit	tive are	as on s	site?	forest	lea we	ana								
F١	•	d in rela	ation tc	o sensi:	tive are	as on :	site?	tores										

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR	
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 2	Plot #: 1
Forest Cover Type: Tulip poplar	Date: 17 August 2021	
Plot Size: 1/10 Acre (37.5' radius)		

Plot Size: 1/10 Acre (3	87.5' r	adius)														
Basal Area in Square					017											T	
Feet per Acre: 100	Ni	ımbei	of	Nu	SIZ mbei		122.0	FIR	EES >2		Imber		IN SA	WPLE	E PLO		
		es 2-								-		-	NI.	ımbeı	r of	Average	
	ile		5.9	Tree					Trees 20-29.9" dbh					-	Tree Height		
TREE SPECIES Crown Position	Dom	dbh CoD	Other	Dom	dbh	Other			abn Other	Dom		Other		S >30 CoD	dbh Other	(ft)	Total
4	Dom	COD	Other	Dom	COD	Other	Dom	COD	Other	Dom		Other		COD	Other		
¹ Tulip poplar											1		2				3
² Red maple						6			2		1						9
³ American beech						2											2
4																	0
5																	0
6																	0
7										-							0
8																	0
9	-																0
Total Number of Trees																	
per Size Class						8			2			2			2		14
Number & Size of																	0
Standing Dead Trees		- 01 0	01.			-			01			D			0	Dist Ossession	0
List of Woody Plant S	pecie	s 3-2	0":						Closu				nt of in ot (all I			Plot Succession	al Stage:
sweet gum and pawpaw						С	Ν	E	S	w	%	perri	or (an i	ayersj.			
						Ν	Y	Y	Y	Y	80			%		Matu	re
List of Understory Sp	ecies	0'-3':					Unde	story	Cover	3'-20'		List	of Maj	jor Inv	vasive	Species	
cinnamon fern, huckleber	ry, fan	clubm	oss, p	awpaw	,	С	Ν	E	S	W	%		Plot (A				
common greenbrier, high						N	NI	NI	Y	NI	20	- Ja	Ipanese	e stilt gr	ass, Jap	anese honeysuck	le, Asiatic
pulpit, Virginia creeper, w	hite oa	ık, wild	yam,	sweet g	gum,	IN	Ν	Ν	Y	Ν	20				bitte	ersweet	
Rare, etc. Species?	No					Herb	aceou	ıs & V	Voody	Cover	0'-3':	HABIT	AT: W	hat spe	ecies pr	esent?	
Specimen Trees?	Yes					С	Ν	Ε	S	W	%	white-	tailed d	leer, rad	ccoon		
Historic Sites?								Y	N	N	60	Habita	at size,	locatio	on, conf	iguration:	
Disease?								T	IN	IN	60	0 Habitat size, location, configuration: stand surrounded by contiguous forest					
Insects/Infestation?	ation? No							ed W	oody D	ebris		1	Sta	and Suff	ounded	by contiguous for	621
Exotic Plants?	Yes					С	Ν	Е	S	W	%	Wildli	Wildlife cover/food/water?				
Leaf litter? moderate						Y	Y	N	Y	v	00	food a	nd cove	er, wetla	ands pre	esent in adjcent sta	ands
Downed woody debris: light						Ŷ	Ý	N	Ŷ	Y	80		corrid			continuous for	
FUNCTION: Where is stand	l in rela	ation to	sensit	ive area	as on s	site?	fores	ted we	etland a	idjacei	nt			•			
a <i>i</i>																	

Comments:

Dense understory (3-20' height) of sweet gum in portion of this stand. Although contiguous with Stand 1, the vegetative composition does noticeably shift from an oak assemblage to red maple/sweet gum.

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR	
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 3	Plot #: 1
Forest Cover Type: Tulip poplar	Date: 17 August 2021	
Plot Size: 1/10 Acre (37.5' radius)		

Basal Area in Square Feet per Acre: 90					SIZ		SS 0		EES >2	0' HEI	GHT	wітн		MPI F		т	
reel per Acre. 90	Nu	Imber	of	Nu	imber						imber					Average	
	Tre	es 2-	5.9"	-	es 6-1	-	Num	ber of	Trees	-		-	Nu	mber	of	Tree Height	
TREE SPECIES		dbh			dbh			-19.9"			dbh				" dbh		
Crown Position	Dom		Other	Dom	•	Other	Dom		Other	Dom	CoD	Other		CoD		(10)	Total
¹ Tulip poplar			1			2			4		2						9
² Red maple			2			1			1								4
³ American beech			1														1
⁴ White oak											1						1
⁵ Scarlet oak											1						1
⁶ Black gum			1														1
7																	0
8																	0
9																	0
Total Number of Trees per Size Class			5			3			5			4			0		17
Number & Size of			5			3			5			4			0		17
Standing Dead Trees																	0
List of Woody Plant S	Specie	s 3'-2	0':				Ca	anopy	Closu	re:					Cover	Plot Succession	al Stage:
black gum and iron wood						С	Ν	Ε	S	W	%	per Pl	ot (all la	ayers):			
						Y	Y	Y	Y	Y	100					Matu	ire
List of Understory Sp	ecies	0'-3':				I	Under	story	Cover	3'-20'	:	List o	of Maj	or Inv	asive	Species	
huckleberry, rattlesnake p			mon gi	eenbri	er,	С	Ν	E	S	W	%		lot (Á			•	
tick trifoil, false Solomon's maple, sweet gum, fan cl			n cucur	nber, r	ed	Y	Y	Y	Y	Y	100	ľ	·				
Rare, etc. Species?	No	-				Herb	aceor	IS & V	Voody	Cover	0'-3'	HARIT		at sne	cies nr	esent?	
Specimen Trees?	No					C	N	E	S	W	%		tailed d	-	-	coont.	
Historic Sites?	No					-			-					,		iguration:	
Disease?	No					Y	Y	Y	Y	Y	100		-		-	•	· · · · ·
Insects/Infestation?											esi						
Exotic Plants?	Yes				C N E S W % Wildlife cover/food/water?												
Leaf litter?	mode	erate				N	N	Y	Y	Y	60	food a	nd cove	r			
Downed woody debris: light									'		00	Stand	corrido	or/patcl	h?	continuous for	rest
FUNCTION: Where is stand	d in rela	ation to	sensit	ive are	as on s	site?											
Comments:																	

Similar to Stand 1 (may be considered a continuation of Stand 1, with Stand 2 an inclusion).

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR	
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 4	Plot #: 1
Forest Cover Type: Tulip poplar	Date: 23 August 2021	
Plot Size: 1/10 Acre (37.5' radius)		

Basal Area in Square Feet per Acre: 80					SIZ	F CL/	ss o	FTRE	EES >2	0' HEI	GHT	WITH		MPLE	PLO	т				
Teerper Adre. 00	Νι	umber	r of	Νι	umber						imber					Average				
	Tre	es 2-	5.9"	Tre	es 6-1	1.9"	Num	ber of	Trees		es 20-2		Nu	mber	of	Tree Height				
TREE SPECIES		dbh			dbh			-19.9"			dbh		Trees	s >30'	' dbh					
Crown Position	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other		Total			
¹ Tulip poplar			3			1			6								10			
² Black gum			2			1											3			
³ American beech			2			1											3			
⁴ White oak			3														3			
5												0								
6												0								
7													0							
8																	0			
9																				
Total Number of Trees			10						0			<u> </u>			~		10			
per Size Class Number & Size of	┣──		10	┣──		3	 		6						0		19			
Standing Dead Trees			ļ		1	ļ											1			
List of Woody Plant S	pecie	es 3'-2	'0' :	<u>.</u>		Γ	Ca	anopy	Closu	re:		Percei	nt of Inv	/asive	Cover	Plot Succession	al Stage:			
black gum	<u> </u>					С	Ν	E	S	W	%	per Ple	ot (all la	ayers):	0%					
						Y	Y Y Y Y Y 100						Matu	re						
List of Understory Sp	ecies	0'-3':	·			+	Under	storv	Cover	3'-20'	' <u>-</u>	List	of Mai	or Inv	asive	Species				
maple leaf viburnum, com				ech, d	eer	С	N	E	S	W	%		lot (A							
tongue, holly, blueberry, b						-														
partridgeberry, sawtooth v	viburnı	um, hog	g pean	ut (cor	nt.)	Y	Y	Y	Y	Y	100					N/A				
Rare, etc. Species?	No					Herb	aceou	is & V	Voody	Cover	0'-3':	HABIT	AT: Wh	at spe	cies pr	esent?				
Specimen Trees?	No					С	Ν	Е	S	W	%	white-	tailed d	eer, rac	coon					
Historic Sites?	No					Y	Y	Y	Ν	Y	80	Habita	t size, l	ocatio	n, conf	iguration:				
Disease?	e? No												sta	nd surr	ounded	by contiguous for	oct			
Insects/Infestation?	No					С	Down		oody D	ebris	:		314	nu sun	Uunucu	T by contiguous for	631			
Exotic Plants?								Е	S	W	%	Wildlif	e covei	/food/	water?					
Leaf litter?	mode	erate				N	Y	Ν	N	N	20	food ar	nd cove	r						
Downed woody debris:	mode	erate									20	Stand	corrido	or/patcl	h?	continuous for	rest			
FUNCTION: Where is stand	<u>l in rela</u>	ation to	sensit	ive are	as on s	site?														
Company outor																				

Comments:

Undertstory (continued):

poison ivy, iron wood, Solomon's, white avens, Virginia pine, mockernut hickory, Christmas fern

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR	
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 4	Plot #: 2
Forest Cover Type: Tulip poplar	Date: 23 August 2021	
Plot Size: 1/10 Acre (37.5' radius)		

	Basal Area in Square Feet per Acre: 50		SIZE CLASS OF TREES >20' HEIGHT WITHIN SAMPLE PLOT																
-	Teet per Auro. 00	Ni	umber	r of	N												Average		
	ŗ	Tre	ees 2-{	5.9"	Tre	es 6-1	1.9"	Num	ber of	f Trees	Tree	s 20-2	29.9"	Nu	mber	of	Tree Height		
	TREE SPECIES	1	dbh	!		dbh			-19.9"			dbh		Trees	s >30"	' dbh			
	Crown Position	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	<u>, , , , , , , , , , , , , , , , , , , </u>	Total	
1	Tulip poplar	['	['	<u>['</u>			2			1		1						4	
2	Red maple			5			1											6	
3	American holly			1														1	
4	White oak			1														1	
	Mockernut hickory			2														2	
6	Northern red oak			<u> </u>			1											1	
	Sassafras			1														1	
8				<u>[</u>]														0	
9																		0	
	Total Number of Trees per Size Class			10			4			1			1			0		16	
	Number & Size of																	-	
	Standing Dead Trees				<u> </u>		'	Ĺ										0	
_	ist of Woody Plant S	pecie	<u>-S 3-Z</u>	0:			с			Closu							Plot Succession	al Stage:	
De	eech						<u> </u>	N	E	S	W	%	per Plot (all layers): 10%			1070			
L							Y	Y	Y	Y	Y	100					Matu	re	
	ist of Understory Sp								-	Cover		:					Species		
	assafras, Christmas fern						С	Ν	Ε	S	W	%	per P	Plot (A	II Lay	ers):			
	ak, black gum, hay-scen						Ν	Ν	Y	Y	Y	60			bitt	erswee	et and wisteria		
-	laucous-leaved greenbri		j pean	Ut (CON	it.)				-				\vdash						
		No						1		Voody							esent?		
	pecimen Trees?	No					С	Ν	E	S	W	%		tailed de	,				
Historic Sites? No Disease? No							Y	Y	Υ	Ν	Y	60	Habita	it size, i	ocatio	n, cont	iguration:		
	Disease?		—	Dowr	W hor	oody D	habrie	<u> </u>	4	star	nd surro	ounded	by contiguous for	rest					
	Insects/Infestation? No Exotic Plants? Yes						С	Down N		Sody D	W	%	Wildlif	e cover	-food/	votor?			
Leaf litter? moderate							<u> </u>				**	70		nd cover		Valeri			
		mode					N	Y	Ν	Y	Y	60		corrido		h?	continuous for	rest	
-	UNCTION: Where is stand			o sensi	tive are		cito?	<u> </u>				L	Stanu	Corrigo	Πραιοι	11	COntinuous ioi	631	
<u> </u>	JNCHON. Where is stand	1 11 1610	100110	7 561131	.1ve are	do un c	31101												

Comments:

Undertstory (continued):

holly, blueberry, wild yam, partridgeberry, iron wood, trifoil, bittersweet, pawpaw, creeping strawberry

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR	
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 4	Plot #: 3
Forest Cover Type: Tulip poplar	Date: 23 August 2021	
Plot Size: 1/10 Acre (37.5' radius)		

	Basal Area in Square Feet per Acre: 80					SIZ	E CLA	ss o	F TRE	ES >2	0' HEI	GHT	with	N SA	MPLE	PLO	т	
		Nu	umber	' of	Nu	imber						imber		-		-	Average	
		Tre	es 2-{	5.9"	Tree	es 6-1	1.9"	Num	ber of	Trees	Tree	s 20-2	29.9"	Nu	mber	of	Tree Height	
	TREE SPECIES		dbh			dbh		12-	19.9"	dbh		dbh		Trees	s >30'	' dbh	(ft)	
	Crown Position	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other		Total
1	Tulip poplar			1			2		3									6
2	Red maple			4					2									6
3	Beech						1											1
4	White oak						1		1									2
5	Black gum			1														1
6	Southern red oak			1														1
7																		0
8																		0
9																		0
	Total Number of Trees			-			4			0								
_	per Size Class Number & Size of			7			4			6			0			0		17
	Standing Dead Trees		2						1									3
L	ist of Woody Plant S	pecie	s 3'-2	0':				Ca	nopy	Closu	re:		Perce	nt of Inv	/asive	Cover	Plot Succession	al Stage:
b	eech, holly	-					С	Ν	E	S	W	%	per Pl	ot (all la	ayers):	5%		
							Y	Y	Y	Y	Y	100					Mic	ł
L	ist of Understory Sp	ecies	0'-3':					Jnder	storv	Cover	3'-20'	-	List	of Mai	or Inv	asive	Species	
	lueberry, black gum, ho			te oak	sassa	fras,	С	N	E	S	W	%		lot (A				
bi	ttersweet, northern red	oak, Cl	hristma	as fern	, red m	aple,	Y	V	v	Ň	V	400	ľ	``		,		
m	ockernut hickory, trifoil,	Indian	cucum	nber (c	ont.)		Ŷ	Y	Y	Y	Y	100				DITTE	ersweet	
	are, etc. Species?	No					Herb	aceou	is & V	loody (Cover	0'-3':	HABIT	AT: Wh	at spe	cies pr	esent?	
	pecimen Trees?	No					С	Ν	E	S	W	%	white-	tailed d	eer, rac	coon		
	Historic Sites? No							Ν	Y	Ν	Y	60	Habita	t size, l	ocatio	n, conf	iguration:	
Disease? No							Y		-		-			sta	nd surr	ounded	by contiguous for	est
	sects/Infestation?									oody D							by contiguous to	
	xotic Plants?	Yes					С	Ν	Е	S	W	%	Wildlif	e covei	/food/\	water?		
F	eaf litter?	mode					Y	Ν	Ν	Ν	Ν	20		nd cove				
D	owned woody debris:	mode	erate	_								_	Stand	corrido	or/patch	1?	continuous for	rest

FUNCTION: Where is stand in relation to sensitive areas on site?

Comments:

Some prior disturbance from road. More red maple than other plots in Stand 4, but still predominantly tulip stand.

Undertstory (continued):

mountain laurel, holly

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR	
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 4	Plot #: 4
Forest Cover Type: Tulip poplar	Date: 23 August 2021	
Plot Size: 1/10 Acre (37.5' radius)		

Basal Area in Square Feet per Acre: 100	·		,		SIZ		ASS O	F TRE	EES >2	0' HEI	GHT	with	IN SA	MPLE		т	
		umbei es 2-			imber es 6-1	' of			Trees	Nu	mber	' of		imber		Average Tree Height	
TREE SPECIES		dbh			dbh			·19.9"			dbh		Tree	s >30	" dbh		
Crown Position	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other			Other	()	Total
¹ Tulip poplar						2			4								6
² White oak						1			2								3
³ Beech			2														2
⁴ Black oak									1								1
⁵ Northern red oak						1											1
⁶ Red maple			3														3
⁷ American holly			1														1
⁸ Black gum			1														1
9																	0
Total Number of Tree	s		-														40
per Size Class Number & Size of			7			4			7			0			0		18
Standing Dead Trees								1									1
List of Woody Plan	t Specie	es 3'-2	0':				Ca	anopy	Closu	re:						Plot Succession	al Stage:
beech						С	Ν	E	S	W	%	per Pl	ot (all la	ayers):	0%		
						Y	Y	Y	Y	Ν	80					Matu	re
List of Understory	Species	0'-3':					Under	storv	Cover	3'-20'	:	List o	of Mai	or Inv	asive	Species	
Blueberry, partridgebe				r, blac	k	С	Ν	E	S	W	%		, Plot (A			•	
gum, red maple, mock	ernut hicl	kory, w	hite oa	k, holly	/,	V	V	V	V	v	400	ľ	•		,		
beech, mountain laure	I					Y	Y	Y	Y	Y	100						
Rare, etc. Species?	N o					Herb	aceou	is & V	Voody	Cover	0'-3':	HABIT	'AT: Wł	nat spe	cies pr	esent?	
Specimen Trees?	No					С	Ν	E	S	W	%	white-	tailed d	eer, rad	ccoon		
Historic Sites? No							Ν	Y	Ν	Y	60	Habita	ıt size,	locatio	n, conf	iguration:	
Disease? No										-			sta	nd surr	oundec	I by contiguous for	est
Insects/Infestation? No							*		oody D	-							
Exotic Plants? Yes							Ν	Е	S	W	%	Wildlif	e cove	r/food/	water?		
Leaf litter? light Downed woody debris: moderate						N	Ν	Y	Y	Ν	40		nd cove				
Downed woody debris:								Stand	corrido	or/patc	h?	continuous for	est				
FUNCTION: Where is st	and in rel	ation to	sensit	ive are	as on s	site?											
Comments																	

Comments:

More mature, more species diversity, less understory

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR	
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 5	Plot #: 1
Forest Cover Type: Oak/Hickory	Date: 23 August 2021	
Plot Size: 1/10 Acre (37.5' radius)		

Basal Area in Square Feet per Acre: 120					SIZ		SS O	F TRF	ES >2	0' HEI	GHT	wітн	IN SA	MPI F		т					
Teetper Acre. 120	Nu	umber	of	Νι	Imbei						imbei					Average					
	Tre	es 2-	5.9"	Tre	es 6-1	1.9"	Num	ber of	Trees	Tree	s 20-	29.9"	Νι	ımber	of	Tree Height					
TREE SPECIES		dbh			dbh			·19.9"			dbh		Tree	s >30	" dbh						
Crown Position	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	<u> </u>	Total				
¹ White oak						1		1									2				
² Scarlet oak								2		1							3				
³ Red maple			1			3											4				
⁴ Black gum			2														2				
⁵ Northern red oak								2									2				
⁶ Tulip poplar								1									1				
⁷ Virginia pine								1									1				
⁸ Black oak								1									1				
9																	0				
Total Number of Trees			0			4			0			4					40				
per Size Class Number & Size of			3			4			6			1					16				
Standing Dead Trees					3											3					
List of Woody Plant S	pecie	es 3'-2	0':				Ca	anopy	Closu	re:		Perce	nt of In	vasive	Cover	Plot Succession	al Stage:				
beech and mountain laure	el					С	Ν	E	S	W	%	per Pl	ot (all la	ayers):	0%						
						Y	Y	Y	Y	Υ	100					Matu	re				
List of Understory Sp	ecies	0'-3':					Under	storv	Cover	3'-20'	:	List	of Mai	or Inv	asive	Species					
Blueberry, red maple, cor			rier, gl	aucous	s-	С	Ν	E	S	W	%		Plot (A			-					
leaved greenbrier, holly, h	nucklet	berry, v	vhite o	ak, Vir	ginia	N	Y	Y	Y	Y	80		·		,						
Rare, etc. Species?	No					Horb	20001	6 8 V	Voody (Covor	0'_2'		AT. 14/4								
Specimen Trees?	No					C	N	E	S	W	0-3. %		tailed d	•	•	esentr					
Historic Sites?	No					-			-					,		iguration:					
Disease?	No No					N	Y	Y	Ν	Ν	40					by contiguous for	est				
Insects/Infestation?					oody D							i by contiguous to									
Exotic Plants?		С	Ν	Ε	S	W	%	Wildlif	e cove	r/food/	water?										
Leaf litter?	mode					Y	N	Ν	Y	Y	60		nd cove								
Downed woody debris:	mode								•	•		Stand	corrido	or/patc	h?	continuous for	rest				
FUNCTION: Where is stand	d in rela	ation to	sensit	ive are	as on s	site?															
Comments:																	-				
Higher elevation	Higher elevation															ł					

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR	
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 5	Plot #: 2
Forest Cover Type: Oak/Hickory	Date: 23 August 2021	
Plot Size: 1/10 Acre (37.5' radius)		

Basal Area in Square Feet per Acre: 90					SIZ		SS O	F TRE	EES >2	0' HEI	GHT	with	N SA	MPLE		т	
	Nu	umber	of	Nu	mber						imber		-		-	Average	
	Tre	es 2-5	5.9"	Tree	es 6-1	1.9"	Num	ber of	Trees	Tree	s 20-2	29.9"	Nu	mber	of	Tree Height	
TREE SPECIES		dbh	ľ		dbh		12-	·19.9"	dbh		dbh		Trees	s >30'	" dbh	(ft)	
Crown Position	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other		Total
¹ White oak			1			3			1								5
² Scarlet oak						2											2
³ Red maple			4			4											8
⁴ Loblolly pine									1								1
⁵ Tulip poplar			1						2								3
⁶ Mockernut hickory			3			2											5
⁷ Northern red oak			1			1											2
⁸ Virginia pine									2								2
⁹ American beech						1											1
Total Number of Trees per Size Class			10			13			6			0			0		29
Number & Size of	<u> </u>		10	 		13			0			0			0		29
Standing Dead Trees			ľ														0
List of Woody Plant S	pecie	s 3'-2	0':				Ca	anopy	Closu							Plot Succession	al Stage:
mountain laurel						С	Ν	Ε	S	W	%	per Pl	ot (all la	ayers):	0%		
						Y	Y	Y	Y	Y	100					Matu	ire
List of Understory Sp	ecies	0'-3':				, I	Under	story	Cover	3'-20'	:	List o	of Maj	or Inv	asive	Species	
Maple leaf viburnum, nort	hern re	ed oak.	, black	gum,		С	Ν	E	S	W	%	per F	lot (Å	ll Lay	ers):	•	
partridgeberry, sawtooth v common greenbrier	/iburnu	ım, huc	cklebe	rry, paw	vpaw,	Y	Ν	Y	Y	Y	80					N/A	
Rare, etc. Species?	No					Herb	aceou	is & V	Voody	Cover	0'-3':	HABIT	AT: Wh	at spe	cies pr	esent?	
Specimen Trees?	No					С	Ν	Е	Ś	W	%		tailed d	-	-		
Historic Sites?	No					Y	N	Y	N	Y	60	Habita	t size, l	ocatio	n, conf	iguration:	
Disease?	No												oto	nd our	oundod	by contiguous for	root
Insects/Infestation?	tation? No						Down	ed W	oody D	ebris	:		sta	na sum	ounded	by contiguous for	esi
Exotic Plants?	Yes						Ν	E	S	W	%	Wildlife cover/food/water?					
Leaf litter?	mode	rate				Y	Ν	Ν	Y	Ν	40	food a	nd cove	r			
Downed woody debris:	low					'		IN	•		-0	Stand	corrido	or/patcl	h?	continuous for	rest
FUNCTION: Where is stand	d in rela	ation to	sensit	ive area	as on s	site?											

Comments:

Very little groundcover, abundance of small (<2' dbh understory trees).

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR	
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 5	Plot #: 3
Forest Cover Type: Oak/Hickory	Date: 23 August 2021	
Plot Size: 1/10 Acre (37.5' radius)		

Basal Area in Square Feet per Acre: 100					SIZ		SS 0	F TRF	EES >2	0' HEI	GHT	wітні		MPI F		т	
Teet per Acre. 100	Νι	umber	r of	Nu	Imber						imbei					Average	
	Tre	es 2-	5.9"	Tree	es 6-1	1.9"	Num	ber of	Trees	Tree	s 20-	29.9"	Nu	mber	of	Tree Height	
TREE SPECIES		dbh			dbh			19.9"		dbh			Trees	s >30'	" dbh		
Crown Position	Dom		Other	Dom	CoD	Other			Other	Dom	CoD	Other			Other	(11)	Total
¹ White oak			1			1											2
² Scarlet oak					2										2		
³ Red maple			5			2											7
⁴ Northern red oak								1									1
⁵ Tulip poplar					1										1		
6																	0
7																	0
8																	0
9																	0
Total Number of Trees per Size Class			6			4			3			0			0		13
Number & Size of								0									0
Standing Dead Trees		- 01 0						2	01			D			^	Plot Succession	2
List of Woody Plant S	pecie	s 3-2	0:			<u> </u>	Canopy			re: W						Plot Succession	al Stage:
holly						ι L	N	E	S	VV	%	per Plot (all layers): 1%					
						Y	Y	Y	Y	Y	100					Matu	re
List of Understory Sp	ecies	0'-3':					Under	story	Cover	3'-20'	:	List o	of Maj	or Inv	vasive	Species	
Common greenbrier, blac						С	Ν	ш	S	W	%	per P	lot (A	ll Lay	ers):		
viburnum, red maple, sav blueberry, sassafras, blad						Y	Y	Y	Ν	Ν	60			J	apanes	se stilt grass	
Rare, etc. Species?	No					Herb	aceou	s & V	Voody	Cover	0'-3':	HABIT	AT: Wh	at spe	cies pr	esent?	
Specimen Trees?	No					С	Ν	Е	S	W	%		tailed d	-	-		
Historic Sites?	No					V			N			Habita	t size, l	ocatio	n, conf	iguration:	
Disease?	No					Y	N	Ν	Ν	Ν	20			سيريم امم		-	
Insects/Infestation?	No						Down	ed W	oody D	ebris	:		sta	na sum	oundec	by contiguous for	est
Exotic Plants?	Yes					С	Ν	Ε	S	W	%	Wildlif	e covei	/food/\	water?		
Leaf litter?	low					Y	N	Ν	Y	z	40	food a	nd cove	r			
Downed woody debris:	low					'			I		70	Stand	corrido	or/patcl	h?	continuous for	rest
FUNCTION: Where is stand	d in rela	ation to	o sensit	ive are	as on s	site?											1
Comments:																	

Johnnento.

East of bunkers, north of Barta Road, south of Cissna Road and stream, on higher ground.

Understory (continued): Virginia creeper

> C:\Users\e1opxclr\Desktop\Work from Home\Site 1\Package Draft FSD\ Appendix_B_Site 1 FSD Data 2021_8.xlsx S5P3

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR	
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 5	Plot #: 4
Forest Cover Type: Oak/Hickory	Date: 23 August 2021	
Plot Size: 1/10 Acre (37.5' radius)		

Basal Area in Square Feet per Acre: 90					SIZ		ss o		EES >2	0' HEI	GHT	WITH		MPLE	PLO	т	
Teerpernore. 30	Νι	umber	of	Νι	umber						Imber					Average	
	Tre	es 2-5	5.9"	Tre	es 6-1	1.9"	Num	ber of	f Trees	Tree	es 20-2	29.9"	Nu	mber	of	Tree Height	
TREE SPECIES		dbh	<u> </u>		dbh			-19.9"			dbh		Trees	s >30'	" dbh		
Crown Position	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	<u> </u>	Total
¹ White oak	!		2	<u> </u> '		1											3
² Scarlet oak									1								1
³ Red maple			4			1			1								6
⁴ Northern red oak									1								1
⁵ Tulip poplar									2								2
⁶ American beech			1														1
⁷ Virginia pine						1											1
⁸ Black gum			2														2
9																	0
Total Number of Trees						2			E						~		47
per Size Class Number & Size of	┣───		9	┣──		3	 		5	 		0	 		0		17
Standing Dead Trees		1	!		1						1						3
List of Woody Plant S									Closu	re: W						Plot Succession	al Stage:
holly, mockernut hickory,	black ç	gum, re	ed map	le		С	Ν	N E S			%	per Plot (all layers): 0%					
						Y	Y Y Y Y Y 100					Mature					re
List of Understory Sp	ecies	0'-3':				1	Under	story	Cover	3'-20'	:	List o	of Maj	or Inv	asive	Species	
Highbush blueberry, holly						С	Ν	E	S	W	%	per P	Plot (Å	ll Lay	ers):	-	
gum, partridgeberry, mou					Jak,	Y	Y	Y	Y	Y	100						
Indian cucumber, glaucou		ed gre	enbrie	r			-	-				\square					
	No								Voody		1			-	-	esent?	
Specimen Trees?	No					С	Ν	E	S	W	%	1	tailed de	,			
Historic Sites?	No					Y	Ν	Ν	Y	Y	60	Habita	t size, l	locatio	n, conf	figuration:	
Disease? Insects/Infestation?	No No					──	Down	W her	oody D	ehris	<u> </u>	-	sta	nd surr	ounded	by contiguous for	rest
Exotic Plants?	Yes					С	N	E	S S	W	%	Wildlif	e cover	/food/\	vater?		
Leaf litter?	high					Y	Y	N	-				nd cove		water .		
									Y	Ν	60		corrido		h?	continuous for	rest
FUNCTION: Where is stand			sensit	ive are	as on :	site?			<u> </u>	·	<u>.</u>	C					
Commonter		-	-	-													

Comments:

Plot located on the slope of a small creek; large amount of tree fall.

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR	
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 5	Plot #: 5
Forest Cover Type: Oak/Hickory	Date: 23 August 2021	
Plot Size: 1/10 Acre (37.5' radius)		

Basal Area in Square Feet per Acre: 90		SIZE CLASS OF TREES >20' HEIGHT WITHIN SAMPLE PLOT															
	Nu	umber	of	Nu	Imber						mber					Average	
	Tre	es 2-5	5.9"	Tree	es 6-1	1.9"	Num	ber of	Trees	Tree	s 20-2	29.9"	Nu	mber	of	Tree Height	
TREE SPECIES		dbh			dbh		12-	·19.9"	dbh		dbh Trees >30"			" dbh			
Crown Position	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other		Total
¹ Red maple			3			1											4
² Virginia pine								1									1
³ Southern red oak						1											1
⁴ Eastern red cedar			1														1
⁵ Mockernut hickory						1											1
⁶ Scarlet oak						1											1
⁷ Black gum			1														1
⁸ White oak						1		2									3
⁹ Black oak														1			
Total Number of Trees per Size Class			5			5			4			0			0		14
Number & Size of			5	 		5			4			0			0		14
Standing Dead Trees		3															3
List of Woody Plant S	specie	s 3'-2	0':						Closu							Plot Succession	al Stage:
mockernut hickory						С	Ν	Е	S	W	%	per Ple	ot (all la	iyers):	0%		
						Y	Y	Y	Υ	Y	100					Matu	ire
List of Understory Sp	ecies	0'-3':				1	Under	story	Cover	3'-20'	:	List o	of Maj	or Inv	asive	Species	
Highbush blueberry, holly	, red m	naple, v	white c	ak, bla	ick	С	Ν	E	S	W	%	per P	lot (Å	ll Lay	ers):	-	
gum, glaucous-leaved gre	enbrie	ər, hucł	kleberr	у		Y	Υ	Υ	Y	Υ	100						
Rare, etc. Species?	No					Herb	aceou	s & V	Voody	Cover	0'-3':	HABIT	AT: Wh	at spe	cies pr	esent?	
Specimen Trees?	No					С	Ν	Е	S	W	%		tailed d	-	-		
Historic Sites?	No					Y	Ν	Ν	Y	Y	60	Habita	t size, l	ocatio	n, conf	iguration:	
Disease?	No								•	-			eta	od surr	oundod	by contiguous for	roet
Insects/Infestation?	No						Down	ed W	oody D	ebris			510	iu suii	ounded	by contiguous for	631
Exotic Plants?	Yes					С	Ν	E	S	W	%	Wildlif	e covei	/food/\	water?		
Leaf litter?	high					Y	Y	Ν	Y	Ν	60	food a	nd cove	r			
Downed woody debris:	debris: moderate Stand corridor/patch? continuous forest											rest					
FUNCTION: Where is stand	d in rela	ation to	sensit	ive are	as on s	site?											
Comments																	

Comments:

Less ground cover, with more small trees.

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR	
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 6	Plot #: 1
Forest Cover Type: Oak/Hickory	Date: 24 August 2021	
Plot Size: 1/10 Acre (37.5' radius)		

Basal Area in Square Feet per Acre: 70		SIZE CLASS OF TREES >20' HEIGHT WITHIN SAMPLE PLOT																
	Nu	umber	of	Nu	mber	-		-		-	mber					Average		
	Tre	es 2-5	5.9 "	Tree	es 6-1	1.9"	Num	ber of	Trees	Tree	s 20-2	29.9"	Nu	mber	of	Tree Height		
TREE SPECIES		dbh			dbh		12-	·19.9"	dbh		dbh		Trees	s >30'	" dbh			
Crown Position	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	``´	Total	
¹ Red maple			6			2											8	
² Tulip poplar								1									1	
³ White oak			3			1		1									5	
⁴ Chestnut oak								1									1	
⁵ Mockernut hickory						1											1	
6																	0	
7															0			
8															0			
9																	0	
Total Number of Trees		<u> </u>	~						0			0			0		40	
per Size Class Number & Size of			9			4			3			0			0		16	
Standing Dead Trees		1															1	
List of Woody Plant S	pecie	s 3'-20	0':				Ca	anopy	Closu	re:		Perce	nt of Inv	/asive	Cover	Plot Succession	al Stage:	
mountain laurel, red mapl	le, bee	ch				С	Ν	E	S	W	%	per Plot (all layers): 1%						
						Y	Ν	Υ	Y	Υ	80					Matu	ire	
List of Understory Sp	ecies	0'-3':				, I	Under	story	Cover	3'-20'	:	List o	of Maj	or Inv	asive	Species		
Highbush blueberry, white			ple, Vi	rginia p	oine,	С	Ν	E	S	W	%		lot (Á			•		
black gum, holly, mockerr partridgeberry, mountain					od	Y	Y	Ν	Y	Υ	80		-	J	apanes	se stilt grass		
Rare, etc. Species?	No					Herb	aceou	IS & V	Voody	Cover	0'-3':	HABIT	AT: Wh	at spe	cies pr	esent?		
Specimen Trees?	No					С	Ν	Е	Ś	W	%		tailed d	-	-			
Historic Sites?	No					N	Y	Y	Y	Y	80	Habita	t size, l	ocatio	n, conf	iguration:		
Disease?	No					N							oto		oundod	by contiguous for	· · · · ·	
Insects/Infestation?	No						Down	ed W	oody D	ebris			sta	ia sun	ounded	i by contiguous for	esi	
Exotic Plants?	Yes					С	Ν	ш	s	W	%	Wildlif	e covei	/food/\	water?			
Leaf litter?	moderate					N	Y	Z	Ν	z	20	food a	nd cove	r				
Downed woody debris:	low						•				20	Stand	corrido	r/patcl	h?	continuous for	rest	
FUNCTION: Where is stand	d in rela	ation to	sensit	ive area														

Comments:

Specimen white oak within stand but outside of plot. Not many large trees but a thick, well-developed layer of mountain laurel. Located on slope between Barta Road and stream.

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR	
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 6	Plot #: 2
Forest Cover Type: Oak/Hickory	Date: 24 August 2021	
Plot Size: 1/10 Acre (37.5' radius)		

	Basal Area in Square Feet per Acre: 80					SIZ	E CL/	ASS O		EES >2	'0' HE'	IGHT	WITH		MPLE	: PLO	т	
┢	reet per Aore. ov	Ni	umber	r of	Νι	umber						umber					Average	
	ŗ	Tre	ees 2-5	5.9"	Tre	es 6-1	1.9"	Num	ber of	f Trees	Tree	es 20-2	29.9"	Nu	umber	of	Tree Height	
	TREE SPECIES	1	dbh			dbh	-		-19.9"		1	dbh			s >30'	-		
L	Crown Position	Dom			Dom						Dom		Other			Other		Total
1	Red maple		<u> </u>	7			2											9
2	² Tulip poplar		<u> </u>				2			2	\Box'							4
3	³ White oak		<u> </u>	1								1						2
4	Scarlet oak		<u> </u>				2					2						4
5	Northern red oak		<u> </u>	[!			1					['						1
6			<u> </u>	[!						[!	<u>[_'</u>	<u> </u>						0
7			<u> </u>	<u> '</u>						<u> </u>		<u> </u>						0
8			<u> </u>	<u> </u>								<u> </u>						0
9) Total Number of Trees		<u> </u>	<u> </u>						<u> </u>		<u> </u>						0
L	per Size Class			9		7			2			3			0		20	
Ļ	Standing Dead Trees			!														0
	ist of Woody Plant S		<u>s 3'-2'</u>	.0':			Ļ			/ Closu		 '					Plot Succession	al Stage:
m	nountain laurel, red mapl	ie					С	Ν	E	S	W	%	per Pi	lot (all la	ayers):	0%		
					_	_	Ν	Y	Y	Y	Y	80		_	_	_	Matu	ire
	_ist of Understory Sp							Under	story	y Cover 3'-20':							Species	
	Highbush blueberry, red n	•					С	Ν	E	S	W	%	per F	Plot (A	II Lay	ers):		
	vintergreen, moutain laur /irginia pine, common gre	,	,	, tulip r	oplar,		Y	Ν	Ν	Y	Y	60						
	Rare, etc. Species?	No					Herb	aceou	is & V	Voody	Cover	r 0'-3'	HABIT	TAT: WI	hat spe	cies pr	esent?	
	Specimen Trees?	No					C	N	E	S	W	%		-tailed d	-	-		
_	Historic Sites?	No					-			-							figuration:	
	Disease?	No					N	Y	Y	Ν	Y	60					0	
	nsects/Infestation?	No						Dowr	ed W	oody D	Jebris		1	sta	nd surr	ounded	d by contiguous for	est
F	Exotic Plants?	No					С	Ν	Ε	S	W		Wildli	fe covei	r/food/	water?		
Γ	_eaf litter?	mode	erate				Y	Y	Y	Y	Y	100	food a	and cove	er	_		
D	Downed woody debris:									Ĭ	1 <u>1</u>	100	-	l corrido		h?	continuous for	rest
F	UNCTION: Where is stand	d in rel	ation to) sensit	ive are	as on f	site?											
C	Comments:																	

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR	
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 6	Plot #: 3
Forest Cover Type: Oak/Hickory	Date: 24 August 2021	
Plot Size: 1/10 Acre (37.5' radius)		

Basal Area in Square					SI7		0 224		EES >2		ICHT	WITH				. т	-
Feet per Acre: 80		umber	r of	Ni	umber			FIN			umber					Average	
		es 2-			es 6-1		Num	her of	f Trees		es 20-2		N	umber	r of	Tree Height	
TREE SPECIES		dbh			dbh	-		-19.9"			dbh			s >30'	-		
Crown Position	Dom			Dom		Other				Dom					Other	1/	Total
¹ Northern red oak						1											1
² Tulip poplar			3						1		1						5
³ White oak											1		1				2
⁴ Black gum									1						['		1
5																	0
6																	0
7																	0
8								[!	[!		['	<u> </u>	<u> </u>	Ĺ	['		0
9 Total Number et Trees								[!	[!			<u>[</u>]		Ĺ	<u>[</u>		0
Total Number of Trees per Size Class Number & Size of			3			1			2			2			1		9
Standing Dead Trees	Ļ				1		Ĺ		~ .			<u> </u>		<u> </u>	!		1
List of Woody Plant S						Ļ		-	/ Closu		·					Plot Succession	al Stage:
mountain laurel, black gu	m, tulıp	o popla	۱r			С	Ν	E	S	W	%	per m	lot (all la	ayers).	0%	1	
						Y	Y	Y	Y	Y	100					Matu	ıre
List of Understory Sp							Under	story	Cover		·:					e Species	
Highbush blueberry, red r						С	Ν	E	S	W	%	per F	Plot (Å	II Lay	/ers):	-	I
moutain laurel, iron wood gum, Virginia creeper, co				∍r, blac	k	Ν	Ν	Y	Y	Ν	40						
Rare, etc. Species?	No	<u> </u>				Herb	aceou	is & V	Voody	Cover	r 0'-3':	HABIT	TAT: WI	nat spe	·cies p	resent?	
Specimen Trees?	No					C	N	E	S	W	%		-tailed de	-	-	000111	
Historic Sites?	No					Y	Y	– Y	Y	N	80					figuration:	
Disease?	No					•	-	-	-							d by contiguous for	
Insects/Infestation?	No						Down	ied W	oody D	ebris	,	1	ວເດ	Nü Sum	OUTIGEG	Dy contiguous to:	est
Exotic Plants?	No					С	Ν	Ε	S	W	%	Wildlif	fe cover	r/food/	water?		
Leaf litter?	mode	erate				N	Ν	Ν	Y	Ν	20		and cove				
Downed woody debris:	•											Stand	l corrido	or/patc	<u>h?</u>	continuous for	rest
FUNCTION: Where is stand	d in rela	ation to) sensit	ive are	as on ទ	site?											
Comments:																	
																	ŀ

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR	
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 6	Plot #: 4
Forest Cover Type: Oak/Hickory	Date: 24 August 2021	
Plot Size: 1/10 Acre (37.5' radius)		

Basal Area in Square Feet per Acre: 80					SIZ		ss o	FTR	EES >2	0' HEI	GHT	WITH		MPI F		т	
Teet per Acre. 00	Νι	umber	of	Νι	Imber						mber					Average	
	Tre	es 2-	5.9"	Tre	es 6-1	1.9"	Num	ber of	Trees		s 20-2		Nu	mber	of	Tree Height	
TREE SPECIES		dbh			dbh		12-	·19.9"	dbh		dbh		Trees	s >30'	' dbh		
Crown Position	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	(14)	Total
¹ Red maple			4			2											6
² Scarlet oak								1									1
³ Black oak						1											1
⁴ Tulip poplar								2									2
⁵ American beech						1											1
⁶ Northern red oak								2									2
⁷ White oak								1					1				2
⁸ Black gum			1														1
9															0		
Total Number of Trees per Size Class			5			4	6 0 1								16		
Number & Size of		4									1						2
Standing Dead Trees	Spocie	 	<u>ں</u>			I	C -	nonv	Closu	ro:	I	Porco	nt of Inv	asivo	Cover	Plot Succession	_
mountain laurel, holly, be		-3 J -2	0.			С		N E S			%		ot (all la				ai olaye.
mountain laurei, nony, be	,0011					-			-	w				,,			
						N	Y	Y	Y	Y	80					Matu	re
List of Understory S									Cover				-			Species	
Highbush blueberry, red						С	Ν	E	S	W	%	per F	Plot (A	ll Lay	ers):		
common greenbrier, glau gum, Virginia creeper, co					аск	Ν	Ν	Ν	Y	Υ	40						
Rare, etc. Species?	No					Herb	aceou	is & V	Voody	Cover	0'-3':	HABIT	AT: Wh	at spe	cies pr	esent?	
Specimen Trees?	Yes					С	Ν	E	S	W	%		tailed d	-	-		
Historic Sites?	No					Y	V	NI	Y	Y	00	Habita	t size, l	ocatio	n, conf	iguration:	
Disease?	No					ř	Y	N	Ŷ	Ŷ	80		oto	ad ours	aundad	by contiguous for	· · · · ·
Insects/Infestation?	No						Down	ed W	oody D	ebris:			Sla	nu sun	ounded	by contiguous for	621
Exotic Plants?	80					С	Ν	Ε	S	W	%	Wildlif	e covei	/food/\	water?		
Leaf litter?	mode	erate				Y	Y	Y	Y	Ν	80	food a	nd cove	r			
Downed woody debris:	low						'			IN	00	Stand	corrido	or/patcl	h?	continuous for	rest
FUNCTION: Where is stan	d in rela	w relation to sensitive areas on site?]

Comments:

Understory (Continued):

white oak, sassafras, holly, Virginia pine, partridgeberry, pawpaw

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR	
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 6	Plot #: 5
Forest Cover Type: Oak/Hickory	Date: 24 August 2021	
Plot Size: 1/10 Acre (37.5' radius)		

Basal Area in Square Feet per Acre: 70		SIZE CLASS OF TREES >20' HEIGHT WITHIN SAMPLE PLOT															
Feel per Acre. 10	Νι	umber	r of	Νι	umber						imber					Average	
		es 2-5			es 6-1		Num	ber of	Trees		s 20-2		Nu	mber	of	Tree Height	
TREE SPECIES		dbh			dbh			-19.9"		••••	dbh				" dbh		
Crown Position	Dom			Dom		Other	Dom		Other	Dom		Other		CoD			Total
¹ Red maple			4			3				_	1				_		8
² White oak			4			3											7
³ Northern red oak						4											4
⁴ Virginia pine			1			2											3
⁵ Black gum			1														1
⁶ Tulip poplar								2									2
7																	0
8														0			
9															0		
Total Number of Trees per Size Class			10			12			2			1			0		25
Number & Size of Standing Dead Trees		1															1
List of Woody Plant S	pecie	es 3'-2	· O' :	4		Γ	Ca	anopy	Closu	re:		Percer	nt of Inv	/asive	Cover	Plot Succession	al Stage:
black gum, red maple	<u>.</u>					С	Ν	E	S	W	%	per Ple	ot (all la	ayers):	0%		
						Ν	Y	Y	Y	Y	80		Mature				re
List of Understory Sp	ecies	0'-3':				1	Under	story	Cover	3'-20'	:	List c	of Maj	or Inv	asive	Species	
Red maple, northern red				ck gurr	١,	С	N	E	S	W	%		lot (A				
common greenbrier, hay-				-		N	N	Ν	Y	Y	40	ľ	•	-			
Rare, etc. Species?	No					Herb	aceou	IS & V	Voody	Cover	0'-3':	HABIT	∆T· Wh	at spe	cies pr	ocont?	
Specimen Trees?	No					C	N	E	S	W	%		tailed d	-	-	count.	
Historic Sites?	No					-			-					,		iguration:	
Disease?	No					Y	Y	Ν	Y	Y	80					0	
Insects/Infestation?	No					<u> </u>	Down	ed W	oody D	ebris	:		sta	nd surr	ounded	I by contiguous for	est
Exotic Plants?	No					С	Ν	Е	Ś	W	%	Wildlif	e covei	/food/\	water?		
Leaf litter?	mode	erate				Y	Y	Y	Y	Ν	80	food ar	nd cove	r			
Downed woody debris:	s: low Y							T	T	IN	00	Stand	corrido	or/patcl	h?	continuous for	rest
FUNCTION: Where is stand	d in rela	ation to	sensit	ive are	as on s	site?											
Comments:																	

Less sloped than areas further east (downstream); little understory but similar canopy composition to other plots.

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR	
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 6	Plot #: 6
Forest Cover Type: Oak/Hickory	Date: 24 August 2021	
Plot Size: 1/10 Acre (37.5' radius)		

	Basal Area in Square Feet per Acre: 70	SIZE CLASS OF TREES >20' HEIGHT WITHIN SAMPLE PLOT																
	TeerperActor To	Νι	umber	of	Νι	umber			<u> </u>			mber					Average	
		Tre	ees 2-5	5.9"	Tre	es 6-1	1.9"	Num	ber of	Trees	Tree	s 20-2	29.9" Number of T				Tree Height	
	TREE SPECIES		dbh	l		dbh	1	12-	-19.9"	dbh		dbh		Trees	s >30'	" dbh		
Ļ	Crown Position	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	· · ·	Total
1	Red maple			2	!		2											4
2				1			3											4
3	Northern red oak			[!			1											1
4	Virginia pine		<u> </u>							3		1						4
5	Black gum			5			1											6
6	American Beech	<u> </u>		2			<u> </u>											2
7	, Scarlet oak	<u> </u>		[!			1			1								2
8					!													0
9		<u> </u>		[!			<u> </u>											0
l	Total Number of Trees per Size Class	10					12			2	Í		1	Í		0		23
╞	Number & Size of	10					12	 			 			 		U		
L	Standing Dead Trees		1				!											1
	ist of Woody Plant S		es 3'-2	0':			Ļ			Closu							Plot Succession	al Stage:
n	nountain laurel, beech, h	olly					С	Ν	Е	S	W	%	per Pi	ot (all la	ayers):	0%		
							Ν	Y	Ν	Ν	Y	40					Matu	ire
	ist of Understory Sp							Under	story	Cover	3'-20'	:	List o	of Maj	or Inv	vasive	Species	
	lighbush blueberry, huck						С	Ν	E	S	W	%	per P	Plot (Å	ll Lay	ers):	-	
	assafras, partridgeberry, bak, strawberry, black gu					vhite	Y	Y	Y	Y	Y	100						
	Rare, etc. Species?	No		. (-	·/		Herb	aceou	N & 2	Voody (Cover	0'-3':	HABIT	AT: Wh	at spe	cies pr	esent?	
	Specimen Trees?	No					C	N	E	S	W	%		tailed de				
	Historic Sites?	No					Y	Y	- Y	N	Y	80			,		iguration:	
Г	Disease?	No					-	-			-	00		eta	ad ourr	-undor	by contiguous for	
	nsects/Infestation?	No								oody D		:	1	3161	nu sun	Ounded		esi
-	Exotic Plants?	No					С	Ν	Ε	S	W	%	Wildlif	e cover	r/food/	water?		
	_eaf litter?								Y	Y	Y	60		nd cove				
	Downed woody debris: IOW						N	N	·			00	Stand	corrido	or/patcl	h?	continuous for	rest
E	FUNCTION: Where is stand in relation to sensitive areas of						site?											
C	Comments:																	
	Jnderstory (continued) /irginia pine, sweet gu																	
۰	inginia pino, oncor ga	.111																1

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR	
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 7	Plot #: 1
Forest Cover Type: Oak/Hickory	Date: 25 August 2021	
Plot Size: 1/10 Acre (37.5' radius)		

Basal Area in Square Feet per Acre: 120	SIZE CLASS OF TREES >20' HEIGHT WITHIN SAMPLE PLOT																		
	Nu	umber	of	Nu	Imber						mber					Average			
	Tre	es 2-	5.9"	Tree	es 6-1	1.9"	Num	ber of	Trees	Tree	s 20-2	29.9"	Nu	mber	of	Tree Height			
TREE SPECIES		dbh			dbh		12-	·19.9"	dbh		dbh		Tree	s >30'	' dbh	(ft)			
Crown Position	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	1/	Total		
¹ Tulip poplar			2			6			4								12		
² Virginia pine									1								1		
³ White oak			1			3			3								7		
⁴ Red maple			1						1								2		
⁵ Black gum			1			1											2		
⁶ Northern red oak						1										1			
⁷ Mockernut hickory			1													1			
8																	0		
9																			
Total Number of Trees per Size Class			6			10			10			0			0		26		
Number & Size of			•			10			10			v			•		20		
Standing Dead Trees								1									1		
List of Woody Plant S			0':						Closu							Plot Succession	al Stage:		
mountain laurel, beech, s	assafra	as				С	Ν	Е	S	W	%	per Ple	ot (all la	ayers):	2%				
						Y	Ν	Y	Y	Υ	80					Matu	re		
List of Understory Sp	ecies	0'-3':				I	Under	story	Cover	3'-20'		List o	of Maj	or Inv	asive	Species			
Highbush blueberry, huck	leberry	, com	mon po	ogonia,	,	С	Ν	E	S	W	%	per P	lot (A	ll Lay	ers):				
sassafras, mountain laure						N	Y	Y	N	Y	60	1			000000	e stilt grass			
tongue, black gum, red m	aple, h	olly, ir	on woo	od (con	ıt.)										•	0			
	No					Herba	aceou	ıs & V	Voody	Cover	0'-3':	HABIT	AT: Wh	at spe	cies pr	esent?			
Specimen Trees?	No					С	Ν	Ε	S	W	%	white-	tailed d	eer, rac	coon				
Historic Sites?	No					Y	Y	Y	Y	Ν	80	Habita	t size, I	locatio	n, conf	iguration:			
Disease?	No				stand surrounded by contiguous fores									est					
	No								oody D				010		oundoo	by contiguous for	001		
Exotic Plants?	Yes				C N E S W % Wildlife cover/food/water?														
Leaf litter?	mode				Y N N Y Y 60 food and cover														
Downed woody debris:	mode								•			Stand	corrido	or/patcl	h?	continuous for	rest		
FUNCTION: Where is stand	d in rela	n relation to sensitive areas on site?																	

Comments:

Lots of common pogonia and Indian cucumber root on the slope to stream.

Understory (continued):

Virginia pine, hay-scented fern, Indian cucumber root

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR	
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 7	Plot #: 2
Forest Cover Type: Oak/Hickory	Date: 25 August 2021	
Plot Size: 1/10 Acre (37.5' radius)		

Basal Area in Square Feet per Acre: 100					SIZ		SS O	F TRE	EES >2	0' HEI	GHT	with	N SA	MPLE		т	
	Nu	umber	of	Nu	Imber						mber					Average	
	Tre	es 2-	5.9"	Tre	es 6-1	1.9"	Num	ber of	f Trees	Tree	s 20-2	29.9"	Nu	mber	of	Tree Height	
TREE SPECIES		dbh			dbh		12-	-19.9"	dbh		dbh		Trees	s >30'	" dbh		
Crown Position	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other		Total
¹ Scarlet oak									1								1
² Red maple			1			3			1								5
³ Virginia pine									3								3
⁴ Tulip poplar						2			1								3
⁵ Black gum			1														1
⁶ Black oak													1				1
⁷ White oak						1											1
8																	0
9																	0
Total Number of Trees			0			0			0			0			4		4.5
per Size Class Number & Size of			2			6			6			0			1		15
Standing Dead Trees											1						1
List of Woody Plant S	pecie	s 3'-2	0':				Ca	anopy	Closu	re:		Perce	nt of Inv	/asive	Cover	Plot Succession	al Stage:
mountain laurel, beech, b						С	Ν	E	S	W	%	per Pl	ot (all la	ayers):	0%		
						Y	Ν	Y	Y	Y	80					Matu	ire
List of Understory Sp	eries	0'-3'-					Inder	story	Cover	3'-20'	•	l ist d	of Mai	or Inv	asive	Species	
Highbush blueberry, huck				reenbri	er	С	N	E	S	W	%		lot (A			opeoles	
glaucous-leaved greenbri black gum, Indian cucuml	er, sas	safras	, partri	dgebe	rry,	N	Y	Y	Y	Y	80		101 (71	n Euy	010).		
Rare, etc. Species?	No No		pogoi)	Horb	20001	16 & V	Voody	Cover	0'-3'-		AT. \A/L	at cho	oloc pr	acant?	
Specimen Trees?	Yes					C	N	E	S	W	0-5. %		tailed d	•	•	esent:	
Historic Sites?	No					-			-					,		iguration:	
Disease?	No					Y	Y	Y	N	Y	80	inabita				0	
	No						Down	ed W	oody D	ebris			sta	nd surr	ounded	by contiguous for	rest
Exotic Plants?	Yes					С	Ν	E	Ś	W	%	Wildlif	e cove	/food/	water?		
Leaf litter?	mode	erate				Y	Y	N	N	Y	60	food and cover					
Downed woody debris:	mode	erate				T	T	IN	IN	T	60	Stand	corrido	or/patcl	h?	continuous for	rest
FUNCTION: Where is stand	d in rela	ation to	sensit	ive are	as on s	site?											
Comments:																	

Specimen black oak is a double trunk with one side dead. Lots of blueberry in the understory.

Understory (continued): sawtooth viburnum

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR	
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 7	Plot #: 3
Forest Cover Type: Oak/Hickory	Date: 25 August 2021	
Plot Size: 1/10 Acre (37.5' radius)		

Basal Area in Square Feet per Acre: 60					SIZ		0.22		ES >2	0' HEI	СНТ	WITH				т	
Feet per Acre: 60	NL	Imber	of	Nu	imber				LU /2		imber					Average	
		es 2-		-	es 6-1	-	Num	ber of	Trees	-	s 20-2	-	Nu	mber	of	Tree Height	
TREE SPECIES		dbh			dbh			19.9"			dbh	-0.0			dbh		
Crown Position	Dom		Other	Dom		Other			Other	Dom	CoD	Other		CoD		(14)	Total
¹ Scarlet oak						1											1
² Black gum			4														4
³ Virginia pine			1			2			2	1							6
⁴ Tulip poplar			1														1
⁵ Northern red oak						1											1
⁶ Black oak			1														1
7																	0
8																	0
9																	0
Total Number of Trees per Size Class			7			4			2			1			0		14
Number & Size of Standing Dead Trees					1												1
List of Woody Plant S	pecie	s 3'-2	0':		•	1	Ca	anopy	Closu	re:		Perce	nt of Inv	/asive	Cover	Plot Succession	al Stage:
mountain laurel, beech, b			-			С	N	E	S	W	%	per Pl	ot (all la	ayers):	0%		-
	-					N	Y	Ν	Y	Υ	60					Matu	ire
List of Understory Sp	ecies	0'-3':					Under	storv	Cover	3'-20'		List	of Mai	or Inv	asive	Species	
Highbush blueberry, huck				eenbri	er,	С	N	E	S	W	%		lot (A			openee	
partridgeberry, black gum														,	,-		
iron wood						Y	Y	Y	Y	Y	100						
Rare, etc. Species?	No					Herb	aceou	is & V	loody (Cover	0'-3':	HABIT	AT: Wh	at spe	cies pr	esent?	
Specimen Trees?	No					С	Ν	Е	S	W	%	white-	tailed d	eer, rac	coon		
Historic Sites?	No					Y	Y	Y	Ν	Ν	60	Habita	t size, l	ocatio	n, conf	figuration:	
Disease?	No												sta	nd surr	oundec	by contiguous for	est
Insects/Infestation?	No								oody D	-						, ,	
Exotic Plants?	Yes					С	Ν	Е	S	W	%		e covei		water?		
Leaf litter?	mode	erate				Y	Ν	Y	Ν	Y	60		nd cove				1
Downed woody debris:	debris: high ere is stand in relation to sensitive areas c											Stand	corrido	or/patcl	n?	continuous for	est
	a in rela	ation to	sensit	ive are	as on s	SITE?]
Comments:																	-

Northern edge of stand before vegetation composotion change. Large amount of downed pines.

Understory (continued): sawtooth viburnum

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR							
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 8	Plot #: 1						
Forest Cover Type: (Tulip Poplar/Red Maple	Date: 25 August 2021							
Plot Size: 1/10 Acre (37.5' radius)								

Basal Area in Square Feet per Acre: 130		SIZE CLASS OF TREES >20' HEIGHT WITHIN SAMPLE PLOT																
Feet per Acre: 150	Ni	umber	r of	Νι	umber	-			-L0 ~2	-	imber							
		es 2-			es 6-1				Trees 20-29.9"						Tree Height			
TREE SPECIES		dbh			dbh	12-19.9" db				dbh			Trees >30" dbh					
Crown Position	Dom			Dom	CoD	Other				Dom	CoD	Other	Dom		Other	(11)	Total	
¹ Tulip poplar			1						7		1		2				11	
² American beech			1						1								2	
³ Red maple			1			1			1								3	
⁴ Black gum			2														2	
⁵ Willow oak						1											1	
6																	0	
7																	0	
8																	0	
9																	0	
Total Number of Trees per Size Class	5					2	2 9								2		19	
Number & Size of	5						9			 		1	 		2		19	
Standing Dead Trees		1	!			1												
List of Woody Plant S	pecie	. s 3'-2	2 0':			Canopy Closure:						Percent of Invasive Cover Plot Successional Stage:						
						С	Ν	Ε	S	W	%	per Plo	per Plot (all layers): 30%					
						Ν	Y	Ν	Y	Υ	60	Mature					re	
List of Understory Sp	ecies	0'-3':				Understory Cover 3'-20':						List of Major Invasive Species						
Highbush blueberry, parti				greent	orier,	С	Ν	E	S	W	%		Plot (Á			•		
holly, fan clubmoss, pawp Loblolly pine, Virginia cree						Y	Y	Υ	Y	Y	100	ſ	Japan	ese stil	t grass	; Japanese honey:	suckle	
	No					Herb	aceou	IS & V	Voodv (Cover	0'-3':	HABIT	AT: Wh	at spe	cies pr	esent?		
Specimen Trees?	Yes					C	N	E	S	W	%	HABITAT: What species present? white-tailed deer, raccoon						
Historic Sites?	No								-					,		iguration:		
Disease?	No					Y	Y	Y	Ν	Ν	60							
Insects/Infestation?	No						Down	ed W	oody D	ebris	:		sta	nd surre	ounded	I by contiguous for	est	
Exotic Plants?	Yes					С	Ν	Е	S	W	%	Wildlif	e cover	/food/\	water?			
Leaf litter?	low					Y	N	Y	N	Y	60	food ar	nd cove	r				
Downed woody debris:	low						IN	I	IN	Ĭ	00	Stand	corrido	or/patcl	h?	continuous for	est	
FUNCTION: Where is stand	d in rela	ation to	sensit	tive are	as on s	site?												
Comments:																	_	

Northern edge of stand before vegetation composotion change. Large amount of downed pines.

Understory (continued): sawtooth viburnum

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR							
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 8	Plot #: 2						
Forest Cover Type: (Tulip Poplar/Red Maple	Date: 25 August 2021							
Plot Size: 1/10 Acre (37.5' radius)								

Basal Area in Square Feet per Acre: 100	SIZE CLASS OF TREES >20' HEIGHT WITHIN SAMPLE PLOT																	
reet per Acre. 100	Number of Number									mber					Average			
	Tre	es 2-5	5.9"	Tre	es 6-1	1.9"	Num	ber of	Trees	Trees 20-29.9"			" Number of		of	Tree Height		
TREE SPECIES		dbh			dbh				dbh			Trees >30" dbh						
Crown Position	Dom		Other	Dom	CoD	Other	Dom			Dom		Other			Other	1	Total	
¹ Tulip poplar			1			4				3							8	
² Black gum			2			2											4	
³ Red maple						1											1	
⁴ American beech			1			2		1									4	
⁵ Virginia pine						1		1									2	
⁶ Mockernut hickory						1											1	
7																	0	
8																	0	
9																	0	
Total Number of Trees per Size Class	4				11			2			3			0		20		
Number & Size of																		
Standing Dead Trees								2	21.0	L					_		2	
List of Woody Plant S	pecie	S 3 - Z	0':						Closu			Percent of Invasive Cover Plot Successional Stage: per Plot (all layers): 30%						
						С	N	E	S	W	%	perrit	per Flot (all layers): 30%					
						Y	Y	Ν	Y	Ν	60	Mature						
List of Understory Sp									Cover			List of Major Invasive Species						
Highbush blueberry, partie						С	Ν	Е	S	W	%	per P	lot (A	ll Lay	ers):			
holly, fan clubmoss, white						Y	Y	Y	Y	Y	100							
gum, Christmas fern, cinn		fern, ĸ	thus sp	эр. (сог	nt.)							Ļ						
	No					-					-	HABITAT: What species present?						
	No					С	Ν	E	S	W	%	1	tailed d	,				
	No No					Y	Y	Y	Ν	Y	80	Habita	t size, i	ocatio	n, cont	figuration:		
Insects/Infestation?	No						Down	ed W	oody D	ebris	اــــــــــــــــــــــــــــــــــــ		sta	nd surr	ounded	by contiguous for	est	
Exotic Plants?	No					С	Ν	Е	Ś	W	%	Wildlife cover/food/water?						
Leaf litter?	low					Y		v	V	V	00	food a	nd cove	r				
Downed woody debris:							Ν	Y	Y	Y	80	Stand	corrido	or/patcl	h?	continuous for	rest	
FUNCTION: Where is stand	d in rela	ation to	sensit	live are	as on s	site?												
FUNCTION: Where is stand	1 In reia	ation to	sensit	.ive area	as on s	siter												

Comments:

Specimen tulip poplar within stand, outside of plot.

Understory (continued): Virginia chain fern

Property: Fort Belvoir North Area (FBNA)	Prepared By: LJ/CLR							
Owner: U.S. Army, Fort Belvoir, Virginia	Stand #: 8	Plot #: 3						
Forest Cover Type: (Tulip Poplar/Red Maple	Date: 25 August 2021							
Plot Size: 1/10 Acre (37.5' radius)								

Basal Area in Square Feet per Acre: 80	SIZE CLASS OF TREES >20' HEIGHT WITHIN SAMPLE PLOT																	
	Number of Number															Average		
	Tre	es 2-	5.9"	Tre	es 6-1	11.9" Number of Trees				Trees 20-29.9"			" Number of		of	Tree Height		
TREE SPECIES		dbh			dbh		12-	12-19.9" dbh			dbh			s >30'	" dbh			
Crown Position	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	Dom	CoD	Other	(Total	
¹ Northern red oak									2								2	
² White oak						3			1								4	
³ Tulip poplar									1		2						3	
⁴ Scarlet oak									1								1	
⁵ Black gum			3														3	
⁶ Virginia pine									1								1	
⁷ Southern red oak									1								1	
8																	0	
9																	0	
Total Number of Trees									_						_		4.5	
per Size Class Number & Size of	3				3	7					2			0		15		
Standing Dead Trees		2															2	
List of Woody Plant S	pecie	s 3'-2	20':				Ca	anopy	Closu	re:		Percent of Invasive Cover Plot Successional Stage:						
mountain laurel, black gu	m, red	maple	, beec	h		С	Ν	E	S	W	%	per Pl	per Plot (all layers): 30%					
						Y	Y	Ν	Y	Y	80	Mature						
List of Understory Sp	ecies	0'-3':					Under	story	Cover	3'-20'	:	List of Major Invasive Species						
Highbush blueberry, holly				jum, re	d	С	Ν	E	S	W	%		lot (A			••••		
maple, beech, iron wood,	comm	on gre	enbrie	r		Y	Y	Y	Y	Y	100			-				
Rare, etc. Species?	No					Herb	aceou	is & V	Voodv	Cover	0'-3':	HABIT	AT: Wh	at spe	cies pr	esent?		
Specimen Trees?	No					C	N	E	S	W	%	HABITAT: What species present? white-tailed deer, raccoon						
Historic Sites?	No					_			_					,		iguration:		
Disease?	No					Y	Y	N	N	Ν	40		-		-	•		
Insects/Infestation?	No						Down		oody D		:		sta	nd surr	ounded	by contiguous for	est	
Exotic Plants?	No					С	Ν	Е	S	W	%	Wildlif	e cove	r/food/	water?			
Leaf litter?	mode					N	Y	Y	N	Y	60	food a	nd cove	r				
Downed woody debris:	mode											Stand	corrido	or/patc	h?	continuous for	est	
FUNCTION: Where is stand	d in rela	ation to	sensi	ive are	as on s	site?												
Commonte																		

Comments:

This plot transitioning into more oak-dominated area.

APPENDIX C

Site Photographs

Stand 1, Plot 1

Stand 1, looking south with Virginia pine thicket (outside stand) in background.

Stand 4

Stand 4, looking north toward Virginia pine thicket

Stand 6 – robust understory of mountain laurel in Plots 1 and 2

Stand 6

Stand 6, Plot 5 (western portion of stand with more open understory)

Appendix C - Photos

Stand 6

Stand 6

Appendix C - Photos

Stream within Stand 7

Stand 7, Plot 2 – large amount of downed woody debris

Stand 8 – Japanese stilt grass in understory

Stand 8 – Eastern edge

Appendix C - Photos

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX E – SMALL WHORLED POGONIA STUDY

Small Whorled Pogonia Survey for the FBNA Distribution Center, Fort Belvoir, Virginia 21 June 2022

Coastal Resources, Inc. (CRI) conducted a survey for the federally threatened and state endangered small whorled pogonia (*Isotria medeoloides*) on the approximately 160-acre proposed development project at the Fort Belvoir North Area in Fairfax County, Virginia. The small whorled pogonia is a small terrestrial orchid that grows up to 25 cm, with a whitish-green, glaucous stem that bears a single whorl of 3-8 leaves. Due to the presence of the small whorled pogonia at Ft. Belvoir, the U.S. Fish and Wildlife Service (USFWS) requested that a survey be conducted within the Fort Belvoir North Area to addresses the Federal Endangered Species Act requirements for the proposed project.

The survey was conducted on June 21, 2022, by Sean Sipple, who is on the USFWS Virginia Field Office list of qualified surveyors for the small whorled pogonia. Other assistant surveyors included Megan Niehaus and Megan Bolcar with CRI, and John Pilcicki, Dan Cockerhan, and Christina Olson with the USACE. The survey was conducted in habitats identified as "Marginal" and "Suitable" during a preliminary small whorled pogonia survey conducted by CRI in 2021. During the 2022 survey, the team surveyed along parallel transects within "Marginal" and "Suitable" habitats. Transects were spaced between 15 and 25 feet apart, depending on suitability, to maximize detection. Any species observed that had a physical similarity to the small whorled pogonia such as Indian cucumber root (*Medeola virginiana*) or common whorled pogonia (*I. verticillata*) were carefully inspected, positively identified, and noted. The results of the survey documented numerous colonies of common whorled pogonia in the southern portion of the study area. However, no individuals of small whorled pogonia were identified during the survey. These results are consistent with the findings of the preliminary survey conducted by CRI in 2021.

DEPARTMENT OF THE ARMY U.S. ARMY CORPS OF ENGINEERS, BALTIMORE DISTRICT 2 HOPKINS PLAZA BALTIMORE, MARYLAND 21201-2930

CENAB-PL-I

4 August 2021

MEMORANDUM FOR: Robert Kobayashi, Senior Project Manager, Real Estate Field Office, U.S. Army Corps of Engineers, Baltimore District, (443) 615-0313, <u>Robert.t.kobayashi@usace.army.mil</u>

SUBJECT: Results of Field Survey for Small Whorled Pogonia on the Fort Belvoir North Area (FBNA), Fort Belvoir, Virginia

1. In support of National Environmental Policy Act (NEPA) documentation for a proposed building on FBNA, biologists from the USACE Planning Division, Fort Belvoir's Department of Public Works (DPW) Environmental Division, and Sean Sipple, a certified surveyor with Coastal Resources, Inc., conducted an overview survey of the approximately xx-acre portion of Fort Belvoir North Area west of Accotink Creek on July 20-21, 2021. The purpose of the field visit was to obtain as much updated information as possible on the current extent of potential suitable habitat, as well as locate the possible presence of small whorled pogonia (SWP) (*Isotria medeoloides*) itself.

2. A vital component of NEPA is compliance with Section 7 of the Endangered Species Act (ESA). The U.S. Fish and Wildlife Service (USFWS) is the agency responsible for administering the ESA for terrestrial species such as the SWP, a small orchid listed as threatened. The USFWS web-based Information for Planning and Consultation (IPaC) allows project proponents to screen for the potential presence of listed species. Through the IPaC and Fort Belvoir's Integrated Natural Resources Management Plan (INRMP), the western portion of FBNA has been identified as potential habitat for the SWP.

3. Consistent with standard practice in Virginia, the accepted survey window for SWP is between June 1 and July 20 of any given year. Given the time constraints of the proposed action, PL-ISB coordinated with the USFWS' Virginia Field Office regarding the acceptability of a limited survey to be conducted 20-21 July, as this was the soonest a certified surveyor could reasonably be mobilized to conduct fieldwork. It was agreed that the subsequent survey would not be represented to USFWS as an official, formal survey pursuant to the Virginia surveyor standards. Rather, the intent was to obtain as much information as possible to facilitate subsequent consultation as the project design and NEPA proceed, without the unacceptable delay of waiting for the 2022 survey window.

4. Prior to commencing the survey, the team of biologists conducted a site reconnaissance to identify areas that would be more suitable based on the habitat requirements of the SWP, thereby ruling out those areas that would be unsuitable and better focusing the investigation. Based on the reconnaissance, the team targeted slopes along existing stream corridors within the estimated project perimeter, as these areas support relatively mature forests dominated by mixed hardwood species. The team included 3 biologists the first day and 4 biologists the second day and

surveyed parallel transects along the stream corridors, spaced approximately 25 feet apart. Areas identified as suitable (see Enclosure 1) were surveyed closer to maximize detection. Any species observed that had a physical similarity to the small whorled pogonia (e.g., Indian cucumber root, *Medeola virginiana*, or common whorled pogonia, *Isotria verticillata*) were carefully inspected, positively identified, and noted. See Enclosure 2 for the CRI memorandum summarizing the field survey, including a list of vegetative species observed. See Enclosure 3 for photographs.

5. Based on habitat requirements from existing literature, habitat suitability was categorized as follows:

- Unsuitable Habitat areas with little or no potential to support SWP due to the lack of forest, early succession stage, very dense understory and herbaceous cover, or presence of wetlands.
- Marginal Habitat areas with some potential to support SWP. These areas were still mature forests but did not contain all of the other habitat requirements for suitable habitat.
- Suitable Habitat areas with a high potential to support SWP, including mature forests on northerly or easterly facing slopes with flat to moderate topography; the presence of species associated with SWP; acidic, sandy soils with low nutrients; an open understory and herbaceous layer; and canopy openings such as a small stream, road, or dead/fallen trees that allow sunlight to reach the forest floor.

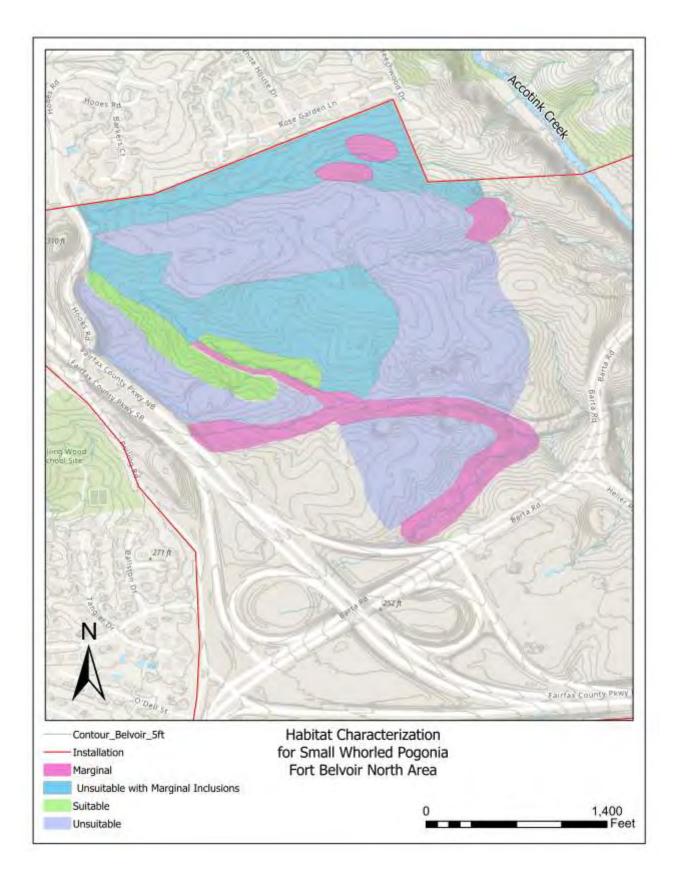
These areas are represented spatially in relation to the FBNA study area on Enclosure 1. In addition, another cover type was identified as Unsuitable with Marginal Inclusions. Due to the time constraints, extensive mapping to distinguish unsuitable from marginal within these areas was not feasible.

6. Although some suitable and marginal habitat was identified in the stream corridors, no small whorled pogonias were identified during the survey. Numerous colonies of common whorled pogonia were documented within the suitable small whorled pogonia habitat along the unnamed tributary that flows southeast across the southern portion of the study area.

7. Outside of the stream corridors, the study area consisted of regenerating or young forest dominated by Virginia pine (*Pinus virginiana*) and sweet gum (*Liquidambar styraciflua*) and young mixed hardwood forest with a relatively dense understory consisting of ericaceous shrubs. Most of these areas were considered unsuitable and were not surveyed or surveyed with less effort.

8. This memo does not complete the Section 7 consultation requirements of ESA. Rather, it is intended to provide information for the NEPA and for subsequent USFWS consultation.

9. Please provide any questions or comments to Ms. Connie Ramsey at 410-962-7783.


MICHAEL J. SCHUSTER Chief, Installation Support Branch Planning Division

Encls:

- Map of Survey Area
 Memo from CRI dated July 22, 2021
- 3. Photographs

Enclosure 1:

Map of Survey Area

Enclosure 2:

Memo from CRI dated July 22, 2021

Enclosure 3:

Photographs

Common Whorled Pogonia

Indian Cucumber Root

An example of suitable habitat near an unnamed stream within the study area.

An example of marginal habitat.

An example of marginal habitat.

An example of unsuitable habitat.

An example of unsuitable habitat along the installation perimeter.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX F – NORTHERN LONG-EARED BAT STUDY

2022 Bat Survey of Northern Fort Belvoir, Virginia

Prepared for:

John Pilcicki Fort Belvoir

Prepared by:

Eric Britzke, Ph.D. Research Wildlife Biologist US Army Engineer Research and Development Center Building 3270, Room 1218 3909 Halls Ferry Road Vicksburg, MS 39180

June 16, 2022

Introduction

Bat conservation and management has become a major concern on state, federal, and private lands throughout the United States. Bats represent an important component of many ecosystems and contribute significantly to an area's biodiversity. Bats have a higher proportion that are considered rare, sensitive, threatened or endangered within some regulatory or assessment framework than for any other group of mammals in North America. Reasons for these listings range from loss of roosting and/or foraging habitat, pesticides, persecution, and disturbance of hibernacula (Racey and Entwistle 2003).

Recently, wind energy development (Johnson et al. 2003, Fiedler 2004, Arnett et al. 2008) and White-nose Syndrome (WNS) have emerged as additional threats (USGS 2008). WNS is an emerging disease that is responsible for the death of over 6 million hibernating bats. These declines has resulted in the listing of the once common northern long-eared bat (*Myotis septentrionalis*) as federally endangered in 2015. Mortality rates observed at wind energy production facilities have been variable, but at 1 facility in West Virginia, > 40 bats per turbine per year have been killed, including the Lasurine or "tree" species not believed to be impacted by WNS (Arnett et al. 2008). As bat populations continue to experience stress from these sources, understanding of bat distributions becomes more important.

Bats in the eastern United States use echolocation to orient to their surroundings and to locate prey. Ultrasonic detectors are now widely available and allows researchers to detect echolocation calls to assist in studies of bat ecology. Research has shown the presence of species-specific echolocation calls exists for many species (Krusic and Neefus 1996, Britzke et al. 2011). Ultrasonic detectors have many advantages over mist netting, including detection of more species at a site than mist nets (Murray et al. 1999, O'Farrell and Gannon 1999), sampling multiple sites without a researcher present, and sampling habitats that lack a constricted flyway necessary for traditional capture techniques. Use of ultrasonic detectors has the potential to increase detectability of some species, thereby improving the efficiency of bat surveys. This has prompted the US Fish and Wildlife Service to incorporate acoustic surveys into the survey guidance for federally listed bats species in the eastern United States.

Installations within the Department of Defense (DoD) are required to balance needs of the Mission as well as stewardship of natural resources. Recently, military installations have undertaken actions to inventory and manage bats on their lands. In order to assess potential regulatory impacts, installation managers must have an understanding of what bat species are present on proposed project areas.

Methods

Fort Belvoir covers approximately 8,650 acres in Fairfax County, VA. The proposed project area was sampled for presence of the northern long-eared bat using the USFWS 2021 Bat Survey guidance. Bat activity was recorded using Anabat Swift bat detector systems (Titley Scientific; <u>www.titley-scientific.com</u>). Prior to initial deployment, units were calibrated using an ultrasonic pest repeller following Larson and Hayes (2000). Sampling was only conducted on nights when temperatures were high enough to maintain bat activity, there was no precipitation, and wind speed was minimal.

Detectors were placed at 17 sites in the proposed project areas on Fort Belvoir in an attempt to conduct a complete bat survey of the property. Detectors were deployed on a tripod (Fig 1) and were set to record from sunset to sunrise. Some detectors were also housed in weatherproof boxes.

Figure 1. Example of Anabat Swift bat detector setup for recording at Fort Belvoir, Virginia during May 2022

Data analysis

Upon completion of 2-3 nights with suitable weather conditions (depending on the number of units deployed in each habitat block), equipment was picked up and the SD card was removed. Downloaded files were organized by site and analyzed using the Kaleidoscope v5.4.6 automated analysis program. The program filters files, extracts parameters, and classifies files based on statistical comparison to a known call library. The species set was picked to include all bat species that are possible on Fort Belvoir (Appendix A). An output file is created that summarizes the bat activity at the site as well as determines species presence using a maximum likelihood estimator (Britzke et al. 2002).

Results

A total of 17 sites were sampled for a total of 35 detector nights across the project area (Figure 2). Recording resulted in sampling of 4,692 files (mean = 130; range 3-458 files/night). A total of 2 bat species were determined to be present through manual vetting of recorded echolocation calls. Red bats were detected at all 17 sites, while big brown bats were detected at 11 sites. Due to the similarity of calls between big brown bats and silver-haired bats, these species were combined and called big brown because they are more common residents of the area during the summer maternity period.

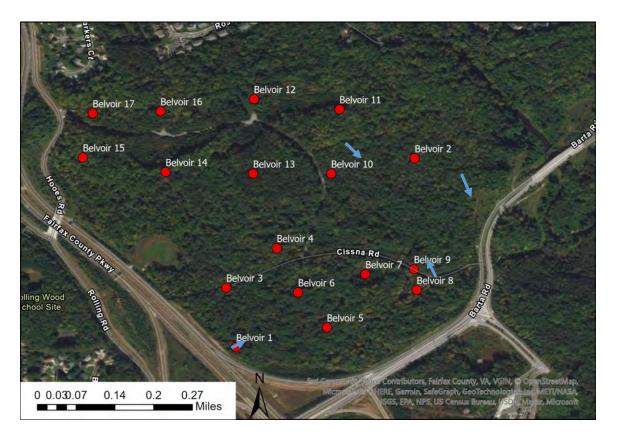


Figure 2. Location of the 17 sites sampled in May 2022 on Fort Belvoir.

Location	Date	Total # of files Bat species dete			
Site1					
	5/24/2022	52	Eastern red		
	5/25/2022	220	Big brown, Eastern red		
Site2			<u> </u>		
	5/24/2022	194	Eastern red		
	5/25/2022	82	Big brown, Eastern red		
Site3					
	5/24/2022	110	Big brown, Eastern red		
	5/25/2022	108	Eastern red		
Site4					
	5/24/2022	69	Eastern red		
	5/25/2022	30	Eastern red		
Site5					
	5/24/2022	11	Eastern red		
	5/25/2022	118	Eastern red		
Site6					
	5/24/2022	10	Big brown, Eastern red		
	5/25/2022	107	Big brown, Eastern red		
Site7					
	5/24/2022	Equip.	None		
	5/25/2022	14	Eastern red		
Site8					
	5/24/2022	84	Big brown, Eastern red		
	5/25/2022	355	Big brown, Eastern red		
Site9					
	5/24/2022	13	Eastern red		
	5/25/2022	191	Big brown, Eastern red		
Site10					
	5/24/2022	118	Eastern red		
	5/25/2022	296	Eastern red		
Site11					
	5/24/2022	3	None		
	5/25/2022	38	Eastern red		
	5/26/2022	270	Big brown, Eastern red		
Site12					
	5/24/2022	31	Big brown, Eastern red		
	5/25/2022	48	Big brown, Eastern red		
	5/26/2022	49	Big brown, Eastern red		
Site13		-	<u> </u>		
	5/24/2022	8	Big brown, Eastern red		
	5/25/2022	95	Big brown, Eastern red		
	5/26/2022	458	Big brown, Eastern red		

Table 1. Results of the Anabat bat survey conducted at Fort Belvoir, Virginia in May 2022.

Site14			
	5/25/2022	59	Big brown, Eastern red
	5/26/2022	413	Eastern red
Site15			
	5/25/2022	150	Eastern red
	5/26/2022	276	Big brown, Eastern red
Site16			
	5/25/2022	128	Eastern red
	5/26/2022	89	Eastern red
Site17			
	5/25/2022	188	Eastern red
	5/26/2022	207	Eastern red

Discussion

Activity levels varied substantially throughout the sites sampled throughout the proposed project. Multiple sites included larger mature hardwood trees with numerous potential roost sites observed. However, likely due to the population declines from White Nose Syndrome, no listed bat species were detected in this survey. Detection of red bats and big browns bats was expected as these bat represent the vast majority of captures form mist nets and acoustic recording on Fort Belvoir in recent years (unpublished data).

Acknowledgements

This project was funded by the Baltimore District of the Corps of Engineers. John Pilcicki assisted with all aspects of the project including planning, locating sites, and serving as a guide.

Literature Cited

Arnett, E. B., K. Brown, W. P. Erickson, J. K. Fiedler, B. L. Hamilton, T. H. Henry, A. Jain, G.D. Johnson, J. Kerns, R. R. Koford, C. P. Nicholson, T. J. O'Connell, M. D. Piorkowski,

and R. D. Tankersley JR. 2008. Patterns of bat fatalities at wind energy facilities in North America. *Journal of Wildlife Management* 72:61-78.

- Britzke, E. R., J. E. Duchamp, K. L. Murray, L. W. Robbins, and R. K. Swihart. 2011. Acoustic identification of bats in the eastern United States: A comparison of parametric and nonparametric methods. *Journal of Wildlife Management* 75:660-667.
- Britzke, E. R., K. L. Murray, J. S. Heywood, and L. W. Robbins. 2002. Acoustic identification.Pp. 220-224 in The Indiana bat: biology and management of an endangered species (A. Kurta and J. Kennedy, eds.). Bat Conservation International, Austin, TX.
- Fiedler, J. K. 2004. Assessment of Bat Mortality and Activity at Buffalo Mountain Windfarm, Eastern Tennessee. University of Tennessee Knoxville, TN (MS thesis).
- Johnson, G. D., W. P. Erickson, and M. D. Strickland. 2003. Mortality of bats at a large-scale wind power development at Buffalo Ridge, Minnesota. *American Midland Naturalist* 150:332-42.
- Krusic, R. A. and C. D. Neefus. 1996. Habitat associations of bat species in the White Mountains National Forest. Pp. 185-198 in *Bats and Forest Symposium* (R. M. R. Barclay and R. M. Brigham, eds.). British Columbia Ministry of Forests, Victoria, British Columbia, Canada.
- Larson D.J., and J.P. Hayes. 2000. Variability in sensitivity of Anabat II bat detectors and a method of calibration. *Acta Chiropterologica* 2:209-213.
- Murray, K. L., E. R. Britzke, B. M. Hadley, and L. W. Robbins. 1999. Surveying bat communities: a comparison between mist nets and the Anabat II bat detector system. *Acta Chiropterologica* 1:105-112.

- O'Farrell, M. J. and W. L. Gannon. 1999. A comparison of acoustic versus capture techniques for the inventory of bats. *Journal of Mammalogy* 80:24-30.
- Racey, P. A. and A. C. Entwhistle. 2003. Conservation ecology of bats. Pp. 680-743 in (T. H. Kunz and M. B. Fenton, Eds) *Bat Ecology*. University of Chicago Press, Chicago, IL. 779 pp.
- United States Geological Survey, National Wildlife Health Center (USGS). 2008. White Nose Syndrome (WNS). Available online at

http://www.nwhc.usgs.gov/disease_information/white-nose_syndrome/index.jsp

Setting	Value
ZC Division Ratio	8
Maximum file length	15 seconds
Analog high pass filter	On
Sensitivity	15
Trigger frequency	10-250 kHz
Minimum event	1 second
Trigger window	1 second
Recording mode	Night

Appendix A. Settings used for Anabat Swift bat detectors at Fort Belvoir, May 2022.

Appendix B – Settings used in downloading files from CFC Read program.

Download Options	×				
Split nights	8 Division Ratio				
Wav, GPS etc ↓ Generate	Status File				
Anabat files					
🔽 Generate	🔽 Save on Cal				
AutoSave para	nooth				
1 M	ax TBC (secs)				
5 Min Line Length					
ZCA files					
🗖 Generate	🔲 filenames .zc				
⊂ Baw ● 5m synch	OK				
C 40T10k	Cancel				

Appendix C. GPS location of the 17 sites sampled for bats at Fort Belvoir during the summer of 2022.

Site	County	Lattitude	Longitude	Habitat
Belvoir 1	Fairfax	38.74921	-77.21011	Canopy opening
Belvoir 2	Fairfax	38.75399	-77.20558	Canopy opening
Belvoir 3	Fairfax	38.75072	-77.21036	Road flyway
Belvoir 4	Fairfax	38.75172	-77.20908	Canopy opening
Belvoir 5	Fairfax	38.74971	-77.20781	Canopy opening
Belvoir 6	Fairfax	38.7506	-77.20854	Canopy opening
Belvoir 7	Fairfax	38.75106	-77.20683	Forest edge
Belvoir 8	Fairfax	38.75066	-77.20553	Canopy opening
Belvoir 9	Fairfax	38.75119	-77.2056	Road flyway
Belvoir 10	Fairfax	38.7536	-77.2077	Canopy opening
Belvoir 11	Fairfax	38.75523	-77.20749	Canopy opening
Belvoir 12	Fairfax	38.75549	-77.20966	Forest edge
Belvoir 13	Fairfax	38.7536	-77.20968	Canopy opening
Belvoir 14	Fairfax	38.75364	-77.2119	Canopy opening
Belvoir 15	Fairfax	38.75401	-77.214	Canopy opening
Belvoir 16	Fairfax	38.75518	-77.21203	Canopy opening
Belvoir 17	Fairfax	38.75513	-77.21375	Road flyway

Appendix D. Pictures of the habitat from each of the 4 sites sampled during this survey.

Site 2

Site 5

Site 8

Site 11

Site 13

Belvoir, Virginia.										
KALEIDOSCOPE 5.4.6 Bats of North America 5.4.0 S/A: 0		EPTFUS	LASBOR	LASCIN	LASNOC	MYOLUC	MYOSEP	MYOSOD	NYCHUM	PERSUB
Site1										
	5/24/2022	6E-07	1	1	1	0.091014	1	1	1	1
	5/25/2022	0	0	1	1	0	0.99929	1	1	0.634743
Site10										
	5/24/2022	1	0.754845	1	1	5.5E-06	1	0.780393	0.144783	1
	5/25/2022	7E-07	0.235795	0.715696	1	0	1	1	1	0.914266
Site11										
	5/24/2022	0.127859	1	1	1	0.008283	1	1	1	1
	5/25/2022	1E-07	0.168335	1	1	0.400234	0.000333	0.560192	1	0.335571
	5/26/2022	0	1	1	1	1	0	1	1	1
Site12										
	5/24/2022	0	0.028334	1	1	1	1	1	0.973394	0.590364
	5/25/2022	0	4E-07	1	1	0.998613	1	1	1	0.994387
	5/26/2022	0	2.3E-06	1	1	1	1	1	1	1
Site13										
	5/24/2022	6E-07	1	1	1	1	1	1	1	1
	5/25/2022	0	0.040229	1	1	0.057243	1	0.000113	1	1
	5/26/2022	0	0.046332	1	1	1E-07	0.655685	0.146516	1	0.680691
Site14										

Appendix E. Breakdown of the maximum likelihood results from the analysis of bat echolocation calls recorded in May 2022 at Fort

5/25/2022	0	0.000775	1	1	0.07029	1	0.574625	0.654628	0.062454
5/26/2022	0	0	1	1	0.132308	1	0.59335	1	1
Site15									
5/25/2022	0	0	1	1	0.002262	1	1	1	1
5/26/2022	0	0	1	1	6.24E-05	0.172263	1	1	1
Site16									
5/25/2022	0	0.406446	1	1	0.000652	1	1	1	1
5/26/2022	0	1	1	1	0.137273	1	1	0.30262	1
Site17									
5/25/2022	0	5.01E-05	1	1	0.012257	0.793266	0	1	1
5/26/2022	0	0	1	1	1E-07	0.725947	1	1	0.838486
Site2									
5/24/2022	6E-07	0	1	1	1E-07	1	1	0.003864	1
5/25/2022	0	0.179508	1	1	0.377803	1	1	1	0.053397
Site3									
5/24/2022	0	1.41E-05	1	1	1	1	1	1.9E-06	1
5/25/2022	0	0.000205	1	1	0.561362	1	1	0.885486	0.529955
Site4									
5/24/2022	0	0.3387	1	1	0.081354	1	1	0.799292	1
5/25/2022	1	1	0.047889	1	1	1	1	1	1
Site5									
5/24/2022	1	1	1	1	1	1	1	1	1
5/25/2022	0	0.142277	1	1	5.9E-06	0.084033	0.875778	1	0.535519
Site6									
5/24/2022	0.593691	6.8E-06	1	0.097603	1	1	1	1	1
5/25/2022	0	0.008217	0.818691	1	1	1	1	0.776166	1
Site7									
5/25/2022	0.016348	1	1	1	1	1	1	1	1

Sileo										
	5/24/2022	0	0	1	0.072406	1	1	1 (0.994336	1
	5/25/2022	0	0	1	1	1	1	1	1	1
Site9										
	5/24/2022	1 0.0	92454	1	1	1	1	1	1	1
	5/25/2022	0	7E-07	1	1	0.077945	1 0.	573154	1	0.066645

Site8

Date	Start	End	Moon	Moon	Min	Max	Average	Average	Precipitation	Wind	Average
			Illumination	Phase	Temperature	Temperature	Temperature	Humidity	(in.)	Direction	Wind Speed
			(%)		(°F)	(°F)	(°F)	(%)			(mph)
5/23	2021	0551	42	Waning	63	75	68.13	58.46	1.5	Ν	10.83
				crescent							
5/24	2022	0550	32	Waning	59	64	61.55	79.4	.29	NE	10.47
				crescent							
5/25	0549	2023	23	Waning	58	71	64.57	62.07	.03	Е	9.96
				crescent							
5/26	0549	2024	15	Waning	61	72	66.91	74.96	0	SE	5.79
				crescent							

Appendix F. Weather Data for Bat Surveys in May 2022 at Fort Belvoir, Virginia.

Appendix G – Resume for Dr. Eric Britzke

Education

Ph.D., Environmental Sciences with Concentration in Biology, Tennessee Technological University, 2003.

M.S., Biology, Missouri State University, 1998.

B.S., Biology, Missouri State University, 1994.

Work Experience

United States Army Engineer Research and Development Center, 11/08 – Present. Research Wildlife Biologist.
Independent Consultant, 6/05 – 11/08. Biologist.
East Arkansas Community College, 9/04 – 6/05. Environmental Science Specialist. Clemson University, 9/03 – 8/04. Post Doctoral Fellow. Tennessee Technological University, 1/01 – 5/01. Instructor. Tennessee Technological University, 5/99 – 5/03. Graduate Research Assistant.
United States Forest Service, 10/98 – 11/98; 5/99- 8/99. Biological Aid.
Missouri State University, 8/95 – 5/98. Graduate Teaching Assistant Missouri State University, 2/95–10/95; 1/97 – 12/97; 2/98–10/98.
Graduate Research Assistant.

Organizations, Panels, Committees, and Awards

Conservation Research Award, National Military Fish and Wildlife Association, 2014 Achievement Medal for Civilian Service, 2013 DoD representative, WNS National Plan Steering committee WNS Coordination Team, WNS National Plan Chair, WNS Disease Surveillance Working Group National Military Fish and Wildlife Association, 2009- Present Central Regional Director, 2011-2013 Chair, Bat Working Group, 2012-2014 Southeastern Bat Diversity Network, 1999 – Present. Member of the Board of Directors 2003-2007 American Society of Mammalogists, 1995 - 2012 Wildlife Society, 2004 – 2012 Student Presentation Award Sigma XI, 1995, 1st place. Golden Key National Honor Society Wings Across the Americas Bat Conservation Award, 2008 Wings Across the Americas Bat Conservation Award, 2010 **Publications** Swift, J. F., R. F. Lance, X. Guan, E. R. Britzke, D. L. Lindsay, and C. E. Edwards. In Press. Multifaceted DNA metabarcoding: validation of a non-invasive, nextgeneration approach to studying bat populations. Evolutionary Applications. XX:XX-XXX.

- Patriquin, K.J., M. L. Leonard, H. G. Broders, W. M. Ford, E. R. Britzke, and A. Silvis. 2016. Weather as a proximate explanation for fission–fusion dynamics in female northern long-eared bats. Animal Behaviour 122:47-57.
- Silvis, A., W.M. Ford and E.R. Britzke. 2015. Day-roost tree selection by northern longeared bats– What do random tree comparisons and one year of data really tell us? Global Ecology and Conservation 3:756-763.
- Silvis, A., W.M. Ford, and E.R. Britzke. 2015. Effects of hierarchical roost removal on northern long-eared bat (*Myotis septentrionalis*) maternity colonies.). PLoS ONE DOI:10.1371/journal.pone.0116356. 17 p
- Jefferson, D.M., M.C. Ferrari, A. Mathis, K.A. Hobson, E.R. Britzke, A.L. Crane, A.R. Blaustein, and D.P. Chivers. 2014. Shifty salamanders: transient trophic polymorphism and cannibalism within natural populations of larval ambystomatid salamanders. Frontiers in Zoology 11:76.
- Jachowski, D.S., C.A. Dobony, L.S. Coleman, W.M. Ford, E.R. Britzke, and J.L. Rodrigue. 2014. Disease and community structure: white-nose syndrome alters spatial and temporal niche partitioning in sympatric bat species. Diversity and Distributions 20:1002–1015.
- Coleman, L.S., W.M. Ford, C.A. Dobony, and E.R. Britzke. 2014. Comparison of radiotelemetric home-range analysis and acoustic detection for little brown bat habitat evaluation. Northeastern Naturalist 21:431-445.
- Whitby, M.D., T.C. Carter, E.R. Britzke, and S.M. Bergeson. 2014. Evaluation of mobile acoustic transect techniques for bat population monitoring. Acta Chiropterologica 16:223-230.
- Coleman, L.S., W.M. Ford, C.A. Dobony, and E.R. Britzke. 2014. Effect of passive acoustic sampling methodology on detecting bats after declines from white nose syndrome. Journal of Ecology and the Natural Environment 6:56-64.
- Britzke E.R., M.W. Gumbert, M.G. Hohmann. 2014. Behavioral response of bats to passive integrated transponder tag reader arrays placed at cave entrances. Journal of Fish and Wildlife Management 5(1):146–150.
- Silvis, A., W.M. Ford, E.R. Britzke, and J.B. Johnson. 2014. Association, roost use and simulated disruption of *Myotis septentrionalis* maternity colonies. Behavioural Processes 103:283–290.
- Britzke, E.R., E.H. Gillam, and K.L. Murray. 2013. Current state of understanding of ultrasonic detectors for the study of bat ecology. Acta Theriologica 58:109-117.
- Britzke, E.R., S.C. Loeb, M.J. Vonhof, C. Romanek, and K.A. Hobson. 2012. Variation in catchment areas of Indiana bat (*Myotis sodalis*) hibernacula inferred from stable hydrogen (δ²H) isotope analysis. Canadian Journal of Zoology 90:1243-1250.
- Silvis, A., W.M. Ford, E.R. Britzke, N.R. Beane, and J.B. Johnson. 2012. Forest Succession and Maternity Day Roost Selection by *Myotis septentrionalis* in a Mesophytic Hardwood Forest. International Journal of Forestry Research 2012:148106.
- Reeder, D. M., C. L. Frank, G. G. Turner, C. U. Meteyer, A. Kurta, E. R. Britzke, M. E. Vodzak, S. R. Darling, C. W. Stihler, A. C. Hicks, R. Jacob, L. E. Grieneisen, S. A. Brownlee, L. K. Muller, and D. S. Blehert. 2012. Frequent Arousal from

Hibernation Linked to Severity of Infection and Mortality in Bats with White-Nose Syndrome. PLoS ONE 7(6): e38920.

- Dodd, L.E., M.J. Lacki, E.R. Britzke, D. A. Buehler, P.D. Keyser, J.L. Larkin, A.D. Rodewald, T.B. Wigley, P.B. Wigley, and L.K. Rieske. 2012. Forest structure affects trophic linkages: how silvicultural disturbance impacts bats and their insect prey. Forest Ecology and Management, 267: 262-270.
- Ford, W.M., E.R. Britzke, C.A. Dobony, J.L. Rodrigue and J.B. Johnson. 2011. Patterns of acoustical activity of bats prior to and following White-nose Syndrome occurrence. Journal of Fish and Wildlife Management 2:125-134.
- Britzke, E. R., J. E. Duchamp, K. L. Murray, L. W. Robbins, and R. K. Swihart. 2011. Acoustic identification of bats in the eastern United States: A comparison of parametric and nonparametric methods. Journal of Wildlife Management 75:660-667.
- Loeb, S. C., and E. R. Britzke. 2010. Intra- and interspecific responses to Rafinesque's big-eared bat (*Corynorhinus rafinesquii*) social calls. Acta Chiropteroloigca 12:329-336.
- Britzke, E. R., B. A. Slack, M. P. Armstrong, and S. C. Loeb. 2010. Effects of orientation and weatherproofing on the detection of bat echolocation calls. Journal of Fish and Wildlife Management 1:136-141.
- Britzke, E. R., P. Sewell, M. G. Hohmann, R. Smith, and S. R. Darling. 2010. Use of temperature-sensitive transmitters to monitor the temperature profiles of hibernating bats affected with White-nose Syndrome. Northeastern Naturalist 17:239-246.
- Wolff, J. M., L. Battaglia, T. C. Carter, L. B. Rodman, E. R. Britzke, and G. A. Feldhammer. 2009. Effects of tornado disturbance on bat communities in southern Illinois. Northeastern Naturalist 16:553-562.
- Britzke, E. R., S. C. Loeb, M. J. Vonhof, C. Romanek, and K. A. Hobson. 2009. Using hydrogen isotopes to assign origins of bats in the eastern United States. Journal of Mammalogy 90:743-751.
- Britzke, E. R., A. C. Hicks, S. L. von Oettingen, and S. R. Darling. 2006. Description of spring roosting trees used by female Indiana bats (*Myotis sodalis*) in the Lake Champlain Valley of Vermont and New York. American Midland Naturalist 155:181-187.
- Britzke, E. R. 2005. Acoustic surveys of bats in the eastern United States. Pp. 63-68 *in*Proceedings of Indiana bat & coal mining: A technical interactive forum (K. C.Vories and A. Harrington, eds.). U.S. Department of Interior, Louisville, KY.
- Britzke, E. R. 2004. Designing monitoring programs with frequency division bat detectors: active versus passive sampling. Pp. 79-83 in Bat echolocation research: tools, techniques, and analysis. (R. M. Brigham, E. K. V. Kalko, G. Jones, S. Parsons, H. J. G. A. Limpens, eds.). Bat Conservation International, Austin, TX.
- Britzke, E. R., M. J. Harvey, and S. C. Loeb. 2003. Indiana bat, *Myotis sodalis*, maternity roosts in the southern United States. Southeastern Naturalist 2:235-242.
- Britzke, E. R., K. L. Murray, J. S. Heywood, and L. W. Robbins. 2002. Acoustic identification. Pp. 220-224 in The Indiana bat: biology and management of an

endangered species (A. Kurta and J. Kennedy, eds.). Bat Conservation International, Austin, TX.

- Britzke, E. R., and L. W. Robbins. 2002. Current distribution of the eastern woodrat, *Neotoma floridana*, in Missouri. Southwestern Naturalist 47:125-127.
- Tomasi, T. E., J. Ashcraft, and E. Britzke. 2001. Effects of fungicides on thyroid function, metabolism, and thermoregulation in cotton rats. Environmental Toxicology and Chemistry 20:1709-1715.
- Murray, K. L., E. R. Britzke, and L. W. Robbins. 2001. Variation in search-phase calls of bats. Journal of Mammalogy 82:728-737.
- Frese, P. W., and E. R. Britzke. 2001. *Siren intermedia* (western lesser siren) predation. Herpetological Review 32:99.
- Britzke, E. R., and K. L. Murray. 2000. A quantitative method for selection of identifiable search-phase calls using the Anabat system. Bat Research News 41:33-36.
- Britzke, E. R., K. L. Murray, B. M. Hadley, and L. W. Robbins. 1999. Measuring bat activity using the Anabat II bat detector system. Bat Research News 40:1-3.
- Robbins, L. W., and E. R. Britzke. 1999. Discriminating *Myotis sodalis* from *M. lucifugus* with Anabat: a critique. Bat Research News 40:75-76.
- Murray, K. L., E. R. Britzke, B. M. Hadley, and L. W. Robbins. 1999. Surveying bat communities: a comparison between mist nets and the Anabat II bat detector system, Acta Chiropterologica 1:105-112.
- Mathis, S. A., and E. R. Britzke. 1999. The roles of body size and experience in agonistic displays by the Ozark zigzag salamander, *Plethodon angusticlavius*. Herpetologica 55:344-352.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX G – AIR QUALITY RECORD OF NON-APPLICABILITY

GENERAL CONFORMITY – RECORD OF NON-APPLICABILITY

Project/Action	Distribution Center and Administrative
Name:	Building, Fort Belvoir North Area,
	Fairfax County, Virginia
Project/Action	Carolyn Hein (484) 612-1060
Point of Contact:	Contractor, HDR

Construction Begin Date (Anticipated): October 2022 Construction End Date (Anticipated): June 2024

The Proposed Action involves the construction of a distribution center within the Fort Belvoir North Area (FBNA). The proposed 525,000 square foot distribution center would consist of a high bay warehouse; a two-story administrative building; an entry control facility, including gate house and vehicle inspection; and enhanced security measures along the fence line including a new fence, an approximately 30-foot clear zone around the fence, and a maintenance and patrol path. The warehouse and administrative building would also include associated parking and covered storage for approximately 600 personnel. Estimated annual air emissions that would be produced from the Proposed Action are included in **Table 1**.

Year	VOC	NOx	CO ²	SO _x ²	PM_{10}^2	$PM_{2.5}^{2}$	CO ₂ e ²
2022							
Construction of Distribution Center	0.439	2.772	2.385	0.007	65.188	0.113	691.8
and Administrative Building							
2023							
Construction of Distribution Center	0.900	6.138	5.390	0.017	65.231	0.226	1,735.2
and Administrative Building							
2024							
Construction of Distribution Center							
and Administrative Building	6.875	3.265	2.890	0.016	0.191	0.189	2,507.3
Heating for Buildings							
Operation of Emergency Generators							
2025 and later							
Heating for Buildings	0.198	3.616	2.944	0.024	0.270	0.270	4,153.3
Operation of Emergency Generators							

Table 1. Estimated Annual Air Emissions from Construction and Operation of a Distribution Center and Administrative Building¹

Notes:

¹ All values are in tons per year (tpy).

² The Record of Non-Applicability does not apply to emissions of CO, SO_X, PM₁₀, PM_{2.5}, and CO₂e.

Key: VOC = volatile organic compound; NO_X = nitrogen oxides; CO = carbon monoxide; SO_X = sulfur oxides; PM_{10} = particulate matter less than or equal to 10 micrometers in diameter; $PM_{2.5}$ = particulate matter less than or equal to 2.5 micrometers in diameter; CO2e = carbon dioxide equivalent.

The Fort Belvoir North Area is in Fairfax County, Virginia, which is within the National Capital Interstate Air Quality Control Region (District of Columbia, Maryland, and Virginia) (40 CFR §81.12). The county is designated by the U.S. Environmental Protection Agency as marginal nonattainment for the 2015 8-hour ozone standard and as maintenance for the 2008 8-hour ozone standard. Ozone forms when nitrogen oxides (NO_X) and volatile organic compounds (VOCs) react in the presence of sunlight. Fairfax County is designated unclassifiable/attainment for all other criteria pollutant standards including carbon monoxide (CO), sulfur dioxide (SO₂), suspended particulate matter (measured less than or equal to 10 microns in diameter [PM₁₀] and measured less than or equal to 2.5 microns in diameter [PM_{2.5}]), and lead. As such, the General Conformity Rule is potentially applicable to emissions of VOCs and NO_X and is not applicable to all other criteria pollutants. The General Conformity Rule applicability thresholds for VOCs and NO_X are 50 tons per year (tpy) and 100 tpy, respectively.

General Conformity under the Clean Air Act, Section 176 has been evaluated for the Proposed Action according to the requirements of 40 CFR 93, Subpart B. The requirements of this rule are not applicable to this action because the highest annual emissions from this action have been estimated to be under the applicability thresholds.

Supporting documentation and emissions estimates are attached.

Wilamena Harback Chief, Environmental Division Date

RECORD OF NON-APPLICABILITY (RONA) SUPPORTING DOCUMENTATION For Distribution Center and Administrative Building Fort Belvoir North Area, Fairfax County, Virginia

The purpose of this documentation is to support General Conformity applicability determinations under the Clean Air Act, Section 176 for a new distribution center at the Fort Belvoir North Area (FBNA), Fairfax County, Virginia. This document provides an estimate of worst-case emissions from the proposed construction and operation of the new distribution center and administrative building. The emission estimates for which this documentation was developed were based on the following assumptions:

Project Characteristics and Construction Assumptions

- Construction and operation of a 525,000 square foot warehouse and administrative building with associated parking and covered storage at FBNA for approximately 600 personnel. Construction would include the high bay warehouse, two-story administrative building, truck maintenance/refueling building, covered/enclosed storage buildings, entry control facility, and enhanced security measures along the fenceline. The total square footage of all building was estimated to be 565,500 square feet. The height of the high bay warehouse and two-story administrative building was assumed to be 50 feet, which was conservatively estimated to be the height of all buildings.
- The proposed site for the new distribution center contains 160 acres. The total area of added impervious surfaces (buildings and pavements) was estimated to be 23.57 acres. For the purposes of this analysis, it was conservatively estimated that site grading would occur on approximately 50 acres (2,178,000 square feet).
- Site grading would include clearing of all vegetation, topsoil, and unsuitable material in order to prepare the site for construction. It was estimated that 11,400 cubic yards of material would be hauled off site. Remaining topsoil and other material would be reused in place and would not be hauled off site.
- Construction would include the high bay warehouse, two-story administrative building, truck maintenance/refueling building, covered/enclosed storage buildings, entry control facility, and enhanced security measures along the fenceline. The total square footage of all buildings was estimated to be 565,500 square feet. The height of the high bay warehouse and two-story administrative building was assumed to be 50 feet, which was conservatively estimated to be the height of all buildings.
- Trenching for underground utility duct banks was estimated to be 3,800 linear feet. Duct bank depth was estimated to be 3 feet.
- Architectural coatings would be applied to all buildings, for a total of approximately 565,500 square feet.

- Paving for the covered and uncovered storage areas, parking areas, and roads would occur on an area totaling approximately 135,000 square feet.
- The approximately 600 personnel that would be assigned to the distribution center would relocate from other areas of Fort Belvoir and would not be new to Fairfax County.
- Construction activities would occur throughout the project to varying degrees from October 2022 through June 2024. A project duration of 21 months was used.

Contractor and Equipment Assumptions

- Construction workers would be on-site for all weekdays during the 21-month construction period to complete this work. Approximately 50 percent would commute to the site each day in a light duty gasoline vehicle and 50 percent would commute in a light duty gasoline truck, with an average round trip commute of 20 miles.
- Durations of operation for heavy equipment would vary depending on the project phase. A breakdown of project phase and equipment use is included below.
 - Estimated equipment to be used includes graders, rollers, rubber tired dozers, scrapers, tractors, loaders, backhoes, excavators, cranes, forklifts, generators sets, welders, cement and mortar mixers, other paving equipment, other industrial equipment, and other construction equipment.

Project Duration and Operation Assumptions

- Construction period of 21 months (October 2022 through June 2024).
- Operational emissions would be produced from the Proposed Action, specifically from heating units and emergency generators. Heating for new buildings and operation of emergency generators would begin following the completion of construction, approximately July 2024.
 - New buildings would be heated via natural gas.
 - One 1-megawatt generator would be installed at the distribution center.
 - One 240-kilowatt generator would be installed at the entry control facility.

Emissions

The emission calculations to quantify these values are presented in the table below, and were performed using the Department of the Air Force's Air Conformity Applicability Model, version 5.0.17b. The model was developed using the methodology and information provided in the *Air Emissions Guide for Air Force Mobile Sources, June 2020, Air Emissions Guide to Air Force Transitory Sources, June 2020, and Air Emissions Factor Guide to Air Force Stationary Sources, June 2020.*

Year	VOC	NO _x	CO ²	SO _x ²	PM_{10}^2	PM _{2.5} ²	CO ₂ e ²
2022							
Construction of Distribution Center	0.439	2.772	2.385	0.007	65.188	0.113	691.8
and Administrative Building							
2023							
Construction of Distribution Center	0.900	6.138	5.390	0.017	65.231	0.226	1,735.2
and Administrative Building							
2024							
Construction of Distribution Center							
and Administrative Building	6.875	3.265	2.890	0.016	0.191	0.189	2,507.3
Heating for Buildings							
Operation of Emergency Generators							
2025 and later							
Heating for Buildings	0.198	3.616	2.944	0.024	0.270	0.270	4,153.3
Operation of Emergency Generators							

Estimated Annual Air Emissions from Construction and Operation of a Distribution Center and Administrative Building¹

Notes:

¹ All values are in tons per year.

 2 The Record of Non-Applicability does not apply to emissions of CO, SO_X, PM₁₀, PM_{2.5}, and CO₂e.

Key: VOC = volatile organic compound; NO_X = nitrogen oxides; CO = carbon monoxide; SO_X = sulfur oxides; PM_{10} = particulate matter less than or equal to 10 micrometers in diameter; $PM_{2.5}$ = particulate matter less than or equal to 2.5 micrometers in diameter; CO2e = carbon dioxide equivalent.

General Conformity Applicability Thresholds for Actions Occurring in Fairfax County

VOC	50 tpy
NO _x	100 tpy

Construction Emissions for Distribution Center, Fort Belvoir North Area

Estimated Activity Emissions:

Pollutant	Total Emissions (tons)
VOC	8.115200
SO _X	0.027914
NO _X	10.366487
СО	9.193386
PM ₁₀	130.475836
PM _{2.5}	0.392906
Pb	0.000000
NH ₃	0.017819
CO ₂ e	2857.7

Key: VOC = volatile organic compound; NO_X = nitrogen oxides; CO = carbon monoxide; SO_X = sulfur oxides; PM_{10} = particulate matter less than or equal to 10 micrometers in diameter; $PM_{2.5}$ = particulate matter less than or equal to 2.5 micrometers in diameter; Pb = lead; NH_3 = ammonia; CO_2e = carbon dioxide equivalent.

Site Grading Phase

- Phase Start Date Start Month: 10 Start Year: 2022 - Phase Duration Number of Months: 6

 General Site Grading Information Area of Site to be Graded (ft²): 2,178,000 Amount of Material to be Hauled On-Site (yd³): 0 Amount of Material to be Hauled Off-Site (yd³): 0

Average Days worked per week: 5

- Construction Exhaust

Equipment Name	Number Of	Hours Per Day
	Equipment	
Graders Composite	2	8
Other Construction Equipment Composite	2	8
Rollers Composite	1	8
Rubber Tired Dozers Composite	2	8
Scrapers Composite	4	8
Tractors/Loaders/Backhoes Composite	2	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³): 20

Average Hauling Truck Round Trip Commute (mile): 20

- Vehicle Exhaust Vehicle Mixture (percent)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

Key: POV = privately-owned vehicle; LDGV = light duty gasoline vehicle (passenger cars); LDGT = light duty gasoline truck [0-8,500 pounds Gross Vehicle Weight Rating (GVWR)]; HDGV = heavy duty gasoline vehicle (>8,500 pounds GVWR); LDDV = light duty diesel vehicle (passenger cars); LDDT = light duty diesel truck (0-8,500 pounds GVWR); HDDV = heavy duty diesel vehicle (>8,500 pounds GVWR); MC = motorcycle.

- Worker Trips

Average Worker Round Trip Commute (mile): 20

- worker Trips Venicie Mixture (percent)								
	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC	
POVs	50.00	50.00	0	0	0	0	0	

- Worker Trips Vehicle Mixture (percent)

- Construction Exhaust Emission Factors

		Emissions Factors (pounds/hour)						
Equipment	VOC	SOx	NOx	СО	PM ₁₀	PM _{2.5}	CO ₂ e	
Graders Composite	0.0806	0.0014	0.4657	0.5731	0.0217	0.0217	132.92	
Rollers Composite	0.0499	0.0007	0.3198	0.3798	0.0180	0.0180	67.149	
Rubber Tires Dozers Composite	0.1919	0.0024	1.3611	0.7352	0.0536	0.0536	239.51	
Scrapers Composite	0.1723	0.0026	1.1176	0.7579	0.0447	0.0447	262.87	
Tractors/Loaders/Backhoes Composite	0.0383	0.0007	0.2301	0.3598	0.0095	0.0095	66.884	
Other Construction Equipment Composite	0.0507	0.0012	0.2785	0.3488	0.0105	0.0105	122.61	

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NOx	CO	PM ₁₀	PM _{2.5}	Pb	NH ₃	CO ₂ e		
LDGV	000.282	000.002	000.220	003.283	000.007	000.006	0.0	000.023	00323.276		
LDGT	000.358	000.003	000.388	004.597	000.009	000.008	0.0	000.024	00417.298		
HDGV	000.706	000.005	001.021	015.119	000.022	000.019	0.0	000.045	00770.239		
LDDV	000.112	000.003	000.133	002.524	000.004	000.004	0.0	000.008	00313.527		
LDDT	000.253	000.004	000.380	004.330	000.007	000.006	0.0	000.008	00445.483		
HDDV	000.493	000.013	004.921	001.743	000.169	000.155	0.0	000.028	01496.485		
MC	002.436	000.003	000.747	012.951	000.027	000.024	0.0	000.054	00397.607		

- Site Grading Phase Formulas

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (tons)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000 CEE_{POL}: Construction Exhaust Emissions (tons) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMTvE: Vehicle Exhaust Vehicle Miles Travel (miles)

HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³)

HAoffsite: Amount of Material to be Hauled Off-Site (yd³)

HC: Average Hauling Truck Capacity (yd³)

(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)

HT: Average Hauling Truck Round Trip Commute (mile/trip)

VPOL = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000
VPOL: Vehicle Emissions (tons)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (percent)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMTwT: Worker Trips Vehicle Miles Travel (miles)

WD: Number of Total Work Days (days)

WT: Average Worker Round Trip Commute (mile)

1.25: Conversion Factor Construction Equipment to Number of Workers

NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

VPOL: Vehicle Emissions (tons)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EFPOL: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (percent)
2000: Conversion Factor pounds to tons

Trenching/Excavating Phase

- Phase Start Date Start Month: 11 Start Year: 2022 - Phase Duration Number of Months: 2

- General Trenching/Excavating Information

Area of Site to be Trenched/Excavated (ft²): 3,800 Amount of Material to be Hauled On-Site (yd³): 0 Amount of Material to be Hauled Off-Site (yd³): 11,400 Average Days worked per week: 5

- Construction Exhaust

Equipment Name	Number Of Equipment	Hours Per Day
Excavators Composite	2	8

Other General Industrial Equipment Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³): 20 Average Hauling Truck Round Trip Commute (mile): 20

- Vehicle Exhaust Vehicle Mixture (percent)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20

- Worker Trips Vehicle Mixture (percent)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Construction Exhaust Emission Factors

		Emissions Factors (pounds/hour)						
Equipment	VOC	SOx	NOx	СО	\mathbf{PM}_{10}	PM _{2.5}	CO ₂ e	
Graders Composite	0.0806	0.0014	0.4657	0.5731	0.0217	0.0217	132.92	
Rollers Composite	0.0499	0.0007	0.3198	0.3798	0.0180	0.0180	67.149	
Rubber Tires Dozers Composite	0.1919	0.0024	1.3611	0.7352	0.0536	0.0536	239.51	
Scrapers Composite	0.1723	0.0026	1.1176	0.7579	0.0447	0.0447	262.87	
Tractors/Loaders/Backhoes Composite	0.0383	0.0007	0.2301	0.3598	0.0095	0.0095	66.884	
Other Construction Equipment Composite	0.0507	0.0012	0.2785	0.3488	0.0105	0.0105	122.61	

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOX	NOX	СО	PM ₁₀	PM _{2.5}	Pb	NH ₃	CO ₂ e
LDGV	000.282	000.002	000.220	003.283	000.007	000.006	0.0	000.023	00323.276
LDGT	000.358	000.003	000.388	004.597	000.009	000.008	0.0	000.024	00417.298
HDGV	000.706	000.005	001.021	015.119	000.022	000.019	0.0	000.045	00770.239
LDDV	000.112	000.003	000.133	002.524	000.004	000.004	0.0	000.008	00313.527
LDDT	000.253	000.004	000.380	004.330	000.007	000.006	0.0	000.008	00445.483
HDDV	000.493	000.013	004.921	001.743	000.169	000.155	0.0	000.028	01496.485
MC	002.436	000.003	000.747	012.951	000.027	000.024	0.0	000.054	00397.607

- Trenching / Excavating Phase Formulas

- Fugitive Dust Emissions per Phase

PM10_{FD} = (20 * ACRE * WD) / 2000
PM10_{FD}: Fugitive Dust PM 10 Emissions (tons)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000 CEE_{POL}: Construction Exhaust Emissions (tons) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³)
HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

VPOL = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000
VPOL: Vehicle Emissions (tons)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (percent)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMTwr: Worker Trips Vehicle Miles Travel (miles)

WD: Number of Total Work Days (days)

WT: Average Worker Round Trip Commute (mile)

1.25: Conversion Factor Construction Equipment to Number of Workers

NE: Number of Construction Equipment

VPOL = (VMTwt * 0.002205 * EFPOL * VM) / 2000
VPOL: Vehicle Emissions (tons)
VMTve: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EFPOL: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (percent)
2000: Conversion Factor pounds to tons

Building Construction Phase

- Phase Start Date Start Month: 1 Start Year: 2023 - Phase Duration Number of Months: 16 General Building Construction Information Building Category: Office or Industrial Area of Building (ft²): 565,500 Height of Building (ft): 50 Average Days worked per week: 5

- Construction Exhaust

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	7
Forklifts Composite	3	8
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	3	7
Welders Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20

- Vehicle Exhaust Vehicle Mixture (percent)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20

- Worker Trips Vehicle Mixture (percent)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40

- Vendor Trips Vehicle Mixture (percent)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Construction Exhaust Emission Factors

		Emissions Factors (pounds/hour)						
Equipment	VOC	SOx	NOx	СО	PM ₁₀	PM _{2.5}	CO ₂ e	
Cranes Composite	0.0754	0.0013	0.5027	0.3786	0.0181	0.0181	128.79	
Forklifts Composite	0.258	0.0006	0.1108	0.2145	0.0034	0.0034	54.454	
Generator Sets Composite	0.320	0.0006	0.2612	0.2683	0.0103	0.0103	61.065	
Tractors/Loaders/Backhoes Composite	0.0364	0.0007	0.2127	0.3593	0.0080	0.0080	66.879	
Welders Composite	0.0242	0.0003	0.1487	0.1761	0.0067	0.0067	25.657	

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

VOCSONOCO PM_{10} $PM_{2.5}$ Pb NH_3	CO ₂ e

LDGV	000.282	000.002	000.220	003.283	000.007	000.006	0.0	000.023	00323.276
LDGT	000.358	000.003	000.388	004.597	000.009	000.008	0.0	000.024	00417.298
HDGV	000.706	000.005	001.021	015.119	000.022	000.019	0.0	000.045	00770.239
LDDV	000.112	000.003	000.133	002.524	000.004	000.004	0.0	000.008	00313.527
LDDT	000.253	000.004	000.380	004.330	000.007	000.006	0.0	000.008	00445.483
HDDV	000.493	000.013	004.921	001.743	000.169	000.155	0.0	000.028	01496.485
MC	002.436	000.003	000.747	012.951	000.027	000.024	0.0	000.054	00397.607

- Building Construction Phase Formulas

- Construction Exhaust Emissions per Phase

CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000 CEE_{POL}: Construction Exhaust Emissions (tons) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

VMT_{VE} = BA * BH * (0.42 / 1000) * HT

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)

BA: Area of Building (ft^2)

BH: Height of Building (ft)

(0.42 / 1000): Conversion Factor ft³ to trips $(0.42 \text{ trip} / 1000 \text{ ft}^3)$

HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

VPOL: Vehicle Emissions (tons)

VMTvE: Vehicle Exhaust Vehicle Miles Travel (miles)

0.002205: Conversion Factor grams to pounds

EF_{POL}: Emission Factor for Pollutant (grams/mile)

VM: Worker Trips On Road Vehicle Mixture (percent)

2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMTwT: Worker Trips Vehicle Miles Travel (miles)

WD: Number of Total Work Days (days)

WT: Average Worker Round Trip Commute (mile)

1.25: Conversion Factor Construction Equipment to Number of Workers

NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

VPOL: Vehicle Emissions (tons)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EFPOL: Emission Factor for Pollutant (grams/mile)

VM: Worker Trips On Road Vehicle Mixture (percent) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

VMT_{VT} = BA * BH * (0.38 / 1000) * HT VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) BA: Area of Building (ft²) BH: Height of Building (ft) (0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

VPOL = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000
VPOL: Vehicle Emissions (tons)
VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (percent)
2000: Conversion Factor pounds to tons

Architectural Coatings Phase

- Phase Start Date Start Month: 4 Start Year: 2024 - Phase Duration Number of Months: 1

 General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 565,500 Average Days worked per week: 5

- Worker Trips

- Worker Trips Vehicle Mixture (percent)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Worker Trips Emission Factors (grams/mile)

	VOC	SO _X	NOX	CO	PM ₁₀	PM _{2.5}	Pb	NH ₃	CO ₂ e
LDGV	000.282	000.002	000.220	003.283	000.007	000.006	0.0	000.023	00323.276
LDGT	000.358	000.003	000.388	004.597	000.009	000.008	0.0	000.024	00417.298
HDGV	000.706	000.005	001.021	015.119	000.022	000.019	0.0	000.045	00770.239
LDDV	000.112	000.003	000.133	002.524	000.004	000.004	0.0	000.008	00313.527
LDDT	000.253	000.004	000.380	004.330	000.007	000.006	0.0	000.008	00445.483
HDDV	000.493	000.013	004.921	001.743	000.169	000.155	0.0	000.028	01496.485
MC	002.436	000.003	000.747	012.951	000.027	000.024	0.0	000.054	00397.607

- Architectural Coatings Phase Formulas

Average Worker Round Trip Commute (mile): 20

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMTwT: Worker Trips Vehicle Miles Travel (miles)

1: Conversion Factor man days to trips (1 trip / 1 man * day)

WT: Average Worker Round Trip Commute (mile)

PA: Paint Area (ft^2)

800: Conversion Factor square feet to man days ($1 \text{ ft}^2 / 1 \text{ man } * \text{ day}$)

VPOL = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000
VPOL: Vehicle Emissions (tons)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (percent)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0
VOC_{AC}: Architectural Coating VOC Emissions (tons)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

Paving Phase

- Phase Start Date	- Phase Duration
Start Month: 5	Number of Months: 2
Start Year: 2024	

- General Paving Information Paving Area (ft²): 135,000 Average Days worked per week: 5

- Construction Exhaust

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Paving Equipment Composite	2	6
Rollers Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20

- Vehicle Exhaust Vehicle Mixture (percent)

LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
LDGV	LDUI	IIDGV				MC

POVs	0	0	0	0	0	100.00	0
------	---	---	---	---	---	--------	---

- Worker Trips

Average Worker Round Trip Commute (mile): 20

- Worker Trips Vehicle Mixture (percent)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Construction Exhaust Emission Factors

		Emissions Factors (pounds/hour)					GHG
Equipment	VOC	SOx	NOx	СО	PM ₁₀	PM _{2.5}	CO ₂ e
Graders Composite	0.0806	0.0014	0.4657	0.5731	0.0217	0.0217	132.92
Rollers Composite	0.0499	0.0007	0.3198	0.3798	0.0180	0.0180	67.149
Rubber Tired Dozers Composite	0.1919	0.0024	1.3611	0.7352	0.0536	0.0536	239.51
Scrapers Composite	0.1723	0.0026	1.1176	0.7579	0.0447	0.0447	262.87
Tractors/Loaders/Backhoes Composite	0.0383	0.0007	0.2301	0.3598	0.0095	0.0095	66.884
Other Construction Equipment	0.0507	0.0012	0.2785	0.3488	0.0105	0.0105	122.61
Composite							

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOX	NO _X	СО	PM ₁₀	PM _{2.5}	Pb	NH ₃	CO ₂ e
LDGV	000.282	000.002	000.220	003.283	000.007	000.006	0.0	000.023	00323.276
LDGT	000.358	000.003	000.388	004.597	000.009	000.008	0.0	000.024	00417.298
HDGV	000.706	000.005	001.021	015.119	000.022	000.019	0.0	000.045	00770.239
LDDV	000.112	000.003	000.133	002.524	000.004	000.004	0.0	000.008	00313.527
LDDT	000.253	000.004	000.380	004.330	000.007	000.006	0.0	000.008	00445.483
HDDV	000.493	000.013	004.921	001.743	000.169	000.155	0.0	000.028	01496.485
MC	002.436	000.003	000.747	012.951	000.027	000.024	0.0	000.054	00397.607

- Paving Phase Formulas

- Construction Exhaust Emissions per Phase

CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000 CEE_{POL}: Construction Exhaust Emissions (tons) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) PA: Paving Area (ft²) 0.25: Thickness of Paving Area (ft) (1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

VPOL = (VMTvE * 0.002205 * EFPOL * VM) / 2000
VPOL: Vehicle Emissions (tons)
VMTvE: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EFPOL: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (percent)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

VMT_{WT} = WD * WT * 1.25 * NE VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) WD: Number of Total Work Days (days)

WT: Average Worker Round Trip Commute (mile)

- 1.25: Conversion Factor Construction Equipment to Number of Workers
- NE: Number of Construction Equipment
- VPOL = (VMTwT * 0.002205 * EFPOL * VM) / 2000
 VPOL: Vehicle Emissions (tons)
 VMTvE: Worker Trips Vehicle Miles Travel (miles)
 0.002205: Conversion Factor grams to pounds
 EFPOL: Emission Factor for Pollutant (grams/mile)
 VM: Worker Trips On Road Vehicle Mixture (percent)
 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

VOC_P = (2.62 * PA) / 43560 VOC_P: Paving VOC Emissions (tons) 2.62: Emission Factor (lb/acre) PA: Paving Area (ft²) 43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

Heating Emissions for Distribution Center, Fort Belvoir North Area

Estimated Activity Emissions:

Pollutant	Total Emissions (tons)
VOC	0.189281
SO _X	0.020649
NO _X	3.441471
СО	2.890836
PM_{10}	0.261552
PM _{2.5}	0.261552
Pb	0.000000
NH ₃	0.000000
CO ₂ e	4143.2

Key: VOC = volatile organic compound; NO_X = nitrogen oxides; CO = carbon monoxide; SO_X = sulfur oxides; PM_{10} = particulate matter less than or equal to 10 micrometers in diameter; $PM_{2.5}$ = particulate matter less than or equal to 2.5 micrometers in diameter; Pb = lead; NH_3 = ammonia; CO_2e = carbon dioxide equivalent.

- Activity Start Date

Start Month: 7 Start Year: 2024 - Activity End Date Indefinite: Yes

- General Heating Information

Heating Calculation Type: Heat Energy Requirement Method Area of floorspace to be heated (ft²): 565,500 Type of fuel: Natural Gas Type of boiler/furnace: Industrial (10 - 250 MMBtu/hr) Heat Value (MMBtu/ft³): 0.00105 Energy Intensity (MMBtu/ft²): 0.1278 Operating Time Per Year (hours): 900

- Heating Emission Factors (pound/1000000 standard cubic foot)

VOC	SOx	NOX	CO	PM ₁₀	PM _{2.5}	Pb	NH ₃	CO ₂ e
5.5	0.6	100	84	7.6	7.6	0.0	0.0	120390

- Heating Formulas

- Heating Fuel Consumption ft³ per Year

FC_{HER}= HA * EI / HV / 1000000

FC_{HER}: Fuel Consumption for Heat Energy Requirement Method
HA: Area of floorspace to be heated (ft²)
EI: Energy Intensity Requirement (MMBtu/ft²)
HV: Heat Value (MMBTU/ft³)
1000000: Conversion Factor

- Heating Emissions per Year

 $HE_{POL} = FC * EF_{POL} / 2000$

HE_{POL}: Heating Emission Emissions (tons) FC: Fuel Consumption EF_{POL}: Emission Factor for Pollutant

2000: Conversion Factor pounds to tons

Distribution Center Generator Emissions for Distribution Center, Fort Belvoir North Area

Pollutant	Total Emissions (tons)
VOC	0.004350
SO _X	0.000076
NO _X	0.157343
СО	0.041796
PM ₁₀	0.004915
PM _{2.5}	0.004915
Pb	0.000000
NH ₃	0.000000
CO ₂ e	8.1

Estimated Activity Emissions:

Key: VOC = volatile organic compound; NO_X = nitrogen oxides; CO = carbon monoxide; SO_X = sulfur oxides; PM_{10} = particulate matter less than or equal to 10 micrometers in diameter; $PM_{2.5}$ = particulate matter less than or equal to 2.5 micrometers in diameter; Pb = lead; NH_3 = ammonia; CO_2e = carbon dioxide equivalent.

- Activity Start Date Start Month: 7

Start Year: 2024

- Activity End Date Indefinite: Yes

- General Emergency Generator Information

Type of Fuel used in Emergency Generator: Diesel Number of Emergency Generators: 1 Emergency Generator's Horsepower: 1350 Average Operating Hours Per Year (hours): 9

- Emergency Generators Emission Factor (pounds/horsepower-hour)

VOČ	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
0.000716	0.0000125	0.0259	0.00688	0.000809	0.000809	0.0	0.0	1.33

- Emergency Generator Formula

- Emergency Generator Emissions per Year

 $AE_{POL} = (NGEN * HP * OT * EF_{POL}) / 2000$

AE_{POL}: Activity Emissions (tons per year)

NGEN: Number of Emergency Generators

HP: Emergency Generator's Horsepower (hp)

OT: Average Operating Hours Per Year (hours)

EFPOL: Emission Factor for Pollutant (lb/hp-hr)

2000: Conversion Factor pounds to tons

Entry Control Facility Generator Emissions for Distribution Center, Fort Belvoir North Area

Estimated Activity Emissions:

Pollutant	Total Emissions (tons)
VOC	0.004206
SO _X	0.003543
NO _X	0.017336
CO	0.011578
PM ₁₀	0.003784
PM _{2.5}	0.003784
Pb	0.000000
NH ₃	0.000000
CO ₂ e	2.0

Key: VOC = volatile organic compound; NO_X = nitrogen oxides; CO = carbon monoxide; SO_X = sulfur oxides; PM_{10} = particulate matter less than or equal to 10 micrometers in diameter; $PM_{2.5}$ = particulate matter less than or equal to 2.5 micrometers in diameter; Pb = lead; NH_3 = ammonia; CO_2e = carbon dioxide equivalent.

- Activity Start Date Start Month: 7 Start Year: 2024 - Activity End Date Indefinite: Yes

 General Emergency Generator Information Type of Fuel used in Emergency Generator: Diesel Number of Emergency Generators: 1 Emergency Generator's Horsepower: 335 Average Operating Hours Per Year (hours): 9

- Emergency Generators Emission Factor (lb/hp-hr)

VOČ	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
0.000716	0.0000125	0.0259	0.00688	0.000809	0.000809	0.0	0.0	1.33

- Emergency Generator Formula

- Emergency Generator Emissions per Year

 AE_{POL} = (NGEN * HP * OT * EF_{POL}) / 2000

AE_{POL}: Activity Emissions (tons per year) NGEN: Number of Emergency Generators HP: Emergency Generator's Horsepower (hp) OT: Average Operating Hours Per Year (hours) EF_{POL}: Emission Factor for Pollutant (lb/hp-hr) 2000: Conversion Factor pounds to tons THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX H – TRAFFIC STUDY

US Army Corps of Engineers Baltimore District

Traffic Impact Study to Support National Environmental Policy Act Documentation for Distribution Center at Fort Belvoir North Area (FBNA)

Fort Belvoir, Virginia

Contract No. W912DR-20-D-0010 Task Order W912DR22F0048

May 2022

Traffic Impact Study to Support National Environmental Policy Act Documentation for Distribution Center at Fort Belvoir North Area (FBNA)

Fort Belvoir, Virginia

Prepared for: US Army Corps of Engineers Baltimore District

Under contract with: U.S. Army Corps of Engineers

Prepared by: HDR-Tehama JV 1600 Genessee St Ste 754 Kansas City, MO 64102-1064

Our Reference: Contract W912DR-20-D-0010 Task Order W912DR22F0048 Tehama Project F0140.02

Date: 4 May 2022

.

Brad Loomis, PE, PTOE Project Manager

CONTENTS

Ex	ecutive S	Summary	ES-1				
1	INTRO	DUCTION	1-1				
	1.1	Introduction	1-1				
	1.2	Analyses Years	1-1				
	1.3	Study Area / Project	1-2				
2	Data C	Collection	2-1				
	2.1	Traffic Volume Collection	2-1				
	2.1.1	2021 Traffic Volume Collection	2-1				
	2.1.2	2022 Traffic Volume Collection	2-3				
	2.2	Existing Year (2022) Traffic Volumes	2-5				
	2.3	Traffic Signal Timing Data	2-8				
3	Operat	Operational Analyses					
	3.1	Methodology	3-1				
	3.2	Description of Level of Service Grades (LOS)	3-1				
	3.3	Analysis Methodology for STOP	3-3				
	3.4	Analysis Methodology for SIGNAL Controlled Intersections	3-4				
4	Existing	g Conditions	4-1				
	4.1	Existing Geometric Configuration and Intersections	4-1				
	4.2	Existing Operational Analysis	4-3				
	4.2.1	Existing (2022) Intersection Operational Analysis	4-3				
5	Build C	Conditions	5-1				
	5.1	Proposed Site Development	5-1				
	5.2	Geometric Configuration	5-1				
	5.3	Trip generation	5-1				
	5.4	Distribution of Access Volumes	5-1				
	5.5	General Traffic Operations	5-5				
	5.5.1	Intersections Analysis	5-5				
6	Conclu	isions and Recommendations	6-1				
7	Acrony	Acronyms and Abbreviations					
8	References						

TABLES

ES-3
ES-4
2-2
2-3
2-4
2-5
3-3
3-4
4-4
5-1
5-2
5-2
5-5

FIGURES

Figure ES-1: Analyzed Intersections for Distribution Center preferred locationES-	·2
Figure 1-1: Proposed Project Location at FBNA1-	·2
Figure 2-1: Count Locations for Existing Conditions2-	·1
Figure 2-2: AM (PM) Peak Hour Turning Movement Volumes –Existing Conditions (2022)2-	-6
Figure 2-3: AM (PM) Peak Hour Turning Movement Volumes – Existing Conditions (2022)2-	.7
Figure 3-1:Level of Service (LOS) Conditions	.3
Figure 4-1: Analyzed Intersections for Distribution Center preferred location4-	·1
Figure 4-2:Existing Lane Configurations, Fort Belvoir North Area4-	·2
Figure 5-1: AM (PM) Peak Hour Turning Movement Volumes – Distribution Center & DIA Annex Build Conditions (2023)	.3
Figure 5-2: AM (PM) Peak Hour Turning Movement Volumes – Distribution Center & DIA Annex Build Conditions (2023)	-4

APPENDICES

Appendix A Traffic Data

Appendix B Synchro Files

EXECUTIVE SUMMARY

This Traffic Impact Study (TIS) presents the traffic operational analysis results in order to accommodate the proposed construction and operation of a new 525,000 square foot Distribution Center consolidated complex consisting of a high bay warehouse; two-story administrative building; truck maintenance/refueling building; covered/enclosed storage buildings; entry control facility, including gate house and vehicle inspection; enhanced security measures along the fenceline, including a new fence and an approximately 30-foot clear zone around the fence; a maintenance and patrol path; and parking areas for personnel. Approximately 600 additional personnel would be employed at the new site. This TIS focuses on roadways and intersections labeled A-R that provide access to the proposed Distribution Center location along Barta Road in the northwest area of the Fort Belvoir North Area (FBNA) complex (Figure ES-1).

A previous traffic study was completed in June 2021 to study alternate locations to construct an annex for the Defense Intelligence Agency (DIA) titled *Traffic Impact Study to Support National Environmental Policy Act Documentation for DIA HQ Annex* (HDR & Tehama, 2021). This annex construction project is hereinafter referred to as the "DIA Annex" or the "DIA Annex project." The data, modeling, and results from this previous study for the DIA Annex project are used within this report. Counts for this previous study were performed in March 2021 during a time that experienced decreased traffic because of the Coronavirus disease 2019 (COVID-19) pandemic. It was assumed that at this time a portion of FBNA staff worked from a home office. The June 2021 report information for the DIA Annex project (i.e., [HDR & Tehama, 2021]) has been supplemented, verified, and/or adjusted to determine the aggregate operational impact for the additional traffic of the proposed Distribution Center with other immediate anticipated site development/improvements.

For this Distribution Center TIS, traffic data was collected in March 2022 at four (4) intersections along Barta Road using JAMAR boards. This data was used to amend the aforementioned previously acquired counts collected in March 2021 for the DIA Annex project. The intersections counted are shown in Figure 2-1.

Level of Service Standards

Level of service is a qualitative measure describing operational traffic conditions, and the perception of these conditions by drivers or passengers. These conditions include factors such as speed, delay, travel time, freedom to maneuver, traffic interruptions, comfort, convenience, and safety. Levels of service are given letter designations from A to F, with Level of Service (LOS) A representing the best operating conditions (free flow, little delay) and LOS F, the worst (congestion, long delays). Generally, LOS A and B are considered high level of service, LOS C and D are considered moderate, and LOS E and F are considered low. In general, the standards are LOS D in urban areas and LOS C in rural areas.

The results of the operational analysis using Synchro are provided in Table ES-1.

Figure ES-1: Analyzed Intersections for Distribution Center preferred location

Table ES-1: Existing Intersection Operational Analysis – FBNA							
la ta na sati sa		Oisus a lista al	AM	PM	AM	PM	
Intersection ID	Intersection	Signalized (Y/N)	Delay (s/veh)		LOS		
В	Barta Road / Heller Road	Y	2.5	0.4	А	А	
С	West Gate Entrance	Ν	-	-	А	А	
D	Barta Road / Parking Garage Exit	Y	0.0	9.5	А	А	
E	Barta Road / Main Guest Access	Ν	-	-	А	А	
F	Barta Road / GEOINT Drive	Y	5.5	10.4	А	В	
G	Barta Road / Heller Road	Y	9.8	0.4	А	А	
Н	Barta Road / Backlick Road	Y	7.9	18.9	А	В	
I	Heller Road / HOV Entrance Ramp	Ν	-	-	А	А	
J	I-95 Exit Ramp / Heller Road	Ν	-	-	А	А	
К	South Gate Entrance	Ν	-	-	А	А	
Р	Barta Road / Rolling Road	Y	8.3	9.3	А	А	
Q	Barta Road / SB VA 286 Ramps	Y	6.2	8.4	А	А	
R	Barta Road / NB VA 286 Ramps	Y	9.0	11.9	А	В	

As shown in the table above, all intersections are operating at LOS B or better.

No changes in existing roadway geometrics were assumed for this study. A new signalized intersection/entrance was modeled at the location shown on Figure ES-1 (Note: This new, proposed signalized intersection/entrance is represented by a star symbol on Figure ES-1 and as Intersection ID letter "A" in the tables herein).

The Distribution Center construction is estimated to generate 600 additional staff positions. The analysis assumes that each additional staff member generates 0.9 additional AM and PM peak hour trip for 600 additional staff (Distribution Center) and one (1) additional AM and PM peak hour trip for each 650 additional staff (DIA Annex). In addition, eighteen (18) truck trips have been modeled for both the AM and PM peak hours. New trip origin and destination points were determined utilizing the March 2021 count data.

Table ES-2: Build Condition (2023) Intersection Operational Analysis						
Intersection	on Intersection (X/N)			Cen	onnel (Dis ter) + onnel (DIA	
ID		AM	PM	AM	PM	
		N.	Delay ((s/veh)	LC	DS
А	New Entrance / Barta Road	Y	4.9	22.7	А	С
В	Barta Road / Heller Road	Y	4.6	0.9	А	А
С	West Gate Entrance	Ν	-	-	А	А
D	Barta Road / Parking Garage Exit	Y	0.1	7.7	А	А
E	Barta Road / Main Guest Access	Ν	8.7	11.4	А	В
F	Barta Road / GEOINT Drive	Y	5.8	66.3	А	E
G	Barta Road / Heller Road	Y	9.8	4.7	А	А
Н	Barta Road / Backlick Road	Y	8.5	22.2	А	С
I	Heller Road / HOV Entrance Ramp	Ν	-	-	А	А
J	I-95 Exit Ramp / Heller Road	Ν	-	-	А	А
К	South Gate Entrance	Ν	-	-	А	А
Р	Barta Road / Rolling Road	Y	8.8	9.7	А	А
Q	Barta Road / SB VA 286 Ramps	Y	7.8	9.4	А	А
R	Barta Road / NB VA 286 Ramps	Y	27.7	11.3	С	В

Based on the traffic operational results found in Table ES-2, this study concludes that FBNA can accommodate the existing site traffic and the anticipated additional traffic generated by the Distribution Center and the DIA Annex.

Indirect Effects

Increased vehicle traffic may affect some intersections outside of the study area. The project traffic traveling through those intersections is expected to result in a small (less than 1 percent) increase in traffic at those intersections. The project trips associated with this project are not expected to affect the LOS of those intersections significantly based on the minor delay increase associated with the proposed additional trips at each outer intersection (H and P in tables ES-1 and ES-2).

Pedestrian and Bicycle Operations

Pedestrians are provided shared phasing with appropriate traffic phases. No impacts are expected along Barta Road. Additional connections to the new distribution facility may be appropriate with connection across Barta Road.

Proposed Design Features Intended to Reduce Impacts

From the analyses results, possible roadway and intersection improvements were identified to mitigate operational impacts that were degraded to LOS E. Potential mitigation is discussed below.

- PM NB Geoint Drive to both EB & WB Barta Road
 - Mitigation Signal optimization and additional turn lane for increased turn volumes.

Based on the modeling results, the existing roadway system build scenario operates at acceptable levels with the construction of the Distribution Center and added personnel. Low LOS at Geoint Drive in the PM will only be anticipated with the construction of the DIA Annex. LOS E is also expected only for exiting vehicles from existing Geoint Drive.

1 INTRODUCTION

1.1 Introduction

Tehama-HDR Joint Venture (JV) was retained by US Army Corps of Engineers (USACE) to evaluate the potential traffic impacts resulting from the proposed construction and operation of a new approximately 525,000 square foot Distribution Center consolidated complex consisting of a high bay warehouse; twostory administrative building; truck maintenance/refueling building; covered/enclosed storage buildings; entry control facility, including gate house and vehicle inspection; enhanced security measures along the fenceline, including a new fence, and an approximately 30-foot clear zone around the fence; a maintenance and patrol path; and parking areas for personnel. Approximately 600 additional personnel would be employed at the new site. This Traffic Impact Study (TIS) focused on roadways providing adequate site access to the proposed Distribution Center location along Barta Road in the northwest area of the Fort Belvoir North Area (FBNA) complex.

Various Measures of Effectiveness (MOEs), such as intersection delay and Level of Service (LOS) are presented in this study. The analysis results are determined using the definitions and methodology outlined in the Transportation Research Board (TRB)'s 6th edition of the Highway Capacity Manual (HCM) (TRB, 2016). The Synchro 11 software module is used to evaluate the signalized and unsignalized intersections.

1.2 Analyses Years

The traffic analyses were performed during morning (AM) and afternoon (PM) weekday peak hours for the following analysis years:

- Existing Year (2022)
 - o 2022 turning movement counts (TMC) at 4 intersections at west end of Barta Road.
 - 2021 Adjusted volumes and TMCs based on total inbound base gate counts from January 2020 (pre Coronavirus disease 2019 or "COVID-19" pandemic) and January 2021. Volumes were increased by 40% to account for the 35-40% reduction in overall base traffic experienced.
- Build Condition (2023)
 - Additional 600 personnel reporting to new Distribution Center balanced with adjusted 2021 traffic.
 - Additional 650 personnel reporting to new DIA Annex with adjusted 2021 traffic. This development is planned for short-term implementation and has been included.

1.3 Study Area / Project

Formerly known as the Engineer Proving Ground, FBNA is located in Springfield, Virginia, approximately 3 miles northwest of Fort Belvoir's main installation (see Figure 1-1). FBNA currently hosts the National Geospatial-Intelligence Agency (NGA) headquarters and associated support facilities, which were constructed in 2011. The study area is located in the northwest corner of the FBNA.

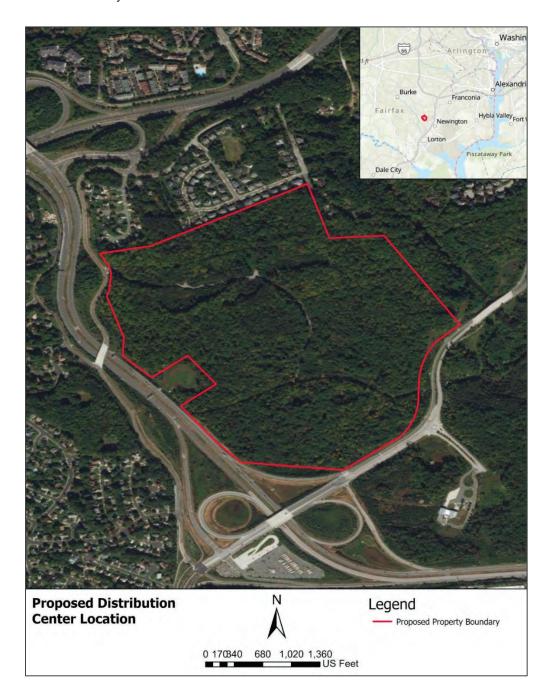


Figure 1-1: Proposed Project Location at FBNA

2 DATA COLLECTION

2.1 Traffic Volume Collection

Traffic data for this study was gathered in March 2021 and March 2022. Additional 2018 traffic data was acquired from Fairfax County Department of Transportation (County of Fairfax, 2021).

Figure 2-1: Count Locations for Existing Conditions

2.1.1 2021 Traffic Volume Collection

A previous traffic study was completed in June 2021 to study alternate locations to construct an annex for the Defense Intelligence Agency (DIA) titled *Traffic Impact Study to Support National Environmental Policy Act Documentation for DIA HQ Annex* (HDR & Tehama, 2021). This annex construction project is hereinafter referred to as the "DIA Annex" or the "DIA Annex project." The data, modeling, and results from this previous study for the DIA Annex project are used within this report. Counts for this previous study were performed in March 2021 during a time that experienced decreased traffic because of the Coronavirus disease 2019 (COVID-19) pandemic. It was assumed that at this time a portion of FBNA staff worked from a home office. The June 2021 report information for the DIA Annex project (i.e., [HDR & Tehama, 2021]) has been supplemented, verified, and/or adjusted to determine the aggregate operational impact for the

additional traffic of the proposed Distribution Center with other immediate anticipated site development/improvements.

Traffic data was collected at eleven (11) locations to support the development of this TIS. Both turning movement counts (TMCs) at the major intersections (5 locations) and automated traffic recorders counts (ATRs) at select ramps/gates (6 locations) were collected. The turning movement counts were completed using JAMAR boards, which are industry-standard counting equipment versatile in acquiring data at signalized, unsignalized, and roundabout intersections. Pico tubes were used for the volume data at ATR identified locations. The tubes allowed the acquisition of 24-hour counts which helped identify peak hours.

TMCs and roadway volume counts were conducted at the locations shown in Figure 2-1. The locations for the roadways and intersection counts are listed below in Table 2-1. Figure 2-2 and Figure 2-3 present diagrams of the volumes counted at specific intersections within the study areas (refer to Appendix A for the original count data). The counts were collected during the AM and PM peak hours over a three-day period of a typical Tuesday, Wednesday, and Thursday. During project discussions, NGA noted that focus may be given to certain times based on employee work schedules. Based on this input, it was assumed the AM peak occurs between 6-9 AM and the PM peak occurs between 3-6 PM. The turning movement counts were collected in 15-minute periods and include classification of passenger vehicles, trucks (vehicles with 3 or more axles), and bicycles/pedestrians. This information was input into the existing conditions model.

	Table 2-1: Traffic Volume Count Locations – March 2021				
Count ID	Intersection	Count Date	Туре		
1	Barta Road with Geoint Drive	2021-03-23	TMC (JAMAR)		
2	Barta Road with Heller Road	2021-03-23	TMC (JAMAR)		
3	Barta Road with Backlick Road	2021-03-23	TMC (JAMAR)		
4	Barta Road / Fairfax County Parkway (VA 286) NB Ramps	2021-03-24	TMC (JAMAR)		
5	Barta Road / Fairfax County Parkway (VA 286) SB Ramps	2021-03-24	TMC (JAMAR)		
6	Heller Road with I-95 NB/I-95 SB Express Lane	2021-03-23	ATR (Pico)		
7	Heller Road with I-95 SB	2021-03-23	ATR (Pico)		
8a	Heller Road with NGA South Gate (inbound)	2021-03-23	ATR (Pico)		
8b	Heller Road with NGA South Gate (outbound)	2021-03-24	ATR (Pico)		
9	Barta Road at NGA West Gate Entry	2021-03-24	ATR (Pico)		
10	Barta Road at NGA West Gate Exit	2021-03-24	ATR (Pico)		
11	GEOINT Drive Visitor Parking Lot Access Lane	2021-03-24	ATR (Pico)		

24-Hour Counts were taken on either Tuesday, Wednesday, or Thursday at 6 primary locations (6 - 11) identified in Figure 2-1; The average daily traffic (ADT) measured in vehicles per day (vpd) is shown in Table 2-2.

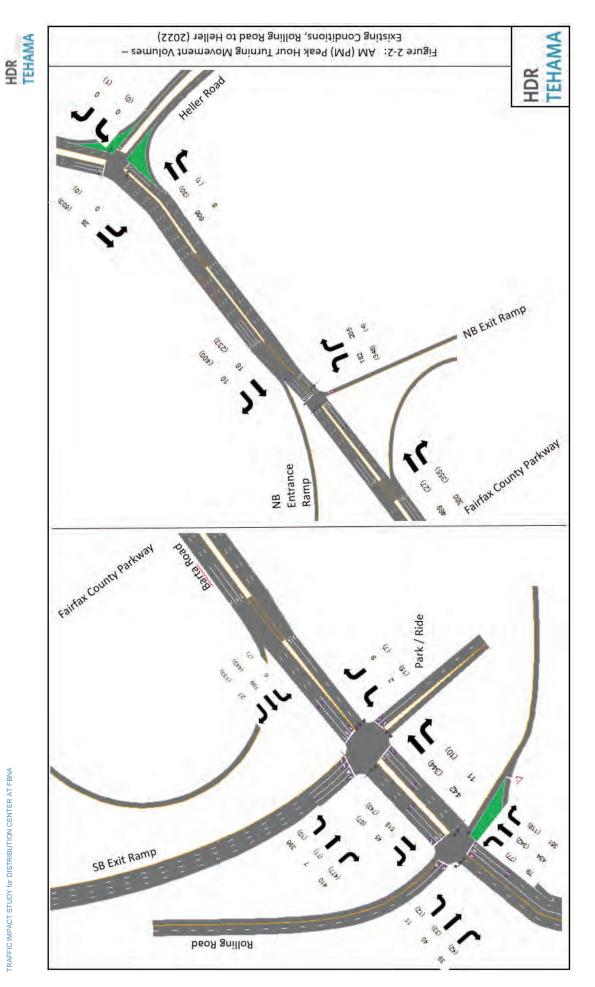
	Table 2-2 : 24-Hour Tube (ATR) Count ADT (2021)					
Count ID	Roadway	Description	Direction	ADT (vpd)		
6	HOV Entrance Lane	Traffic From Heller Road to I- 95	EB	4697		
7a	I-95 Exit Ramp	Exit Ramp to Heller Road (RT)	EB	2234		
7b	I-95 Exit Ramp	Exit Ramp to Heller Road (LT)	WB	1792		
8a	Heller Road	South Gate (Outbound)	SB	188		
8b	Heller Road	South Gate (Inbound)	NB	2632		
9	West Gate	West Gate Entrance Traffic	EB	5788		
10	Exit Gate (Onto Barta Road)	Parking Garage Exit	NB	4180		
11	GEOINT Drive	Visitor Parking Lot Access Lane	SB	1344		

2.1.2 2022 Traffic Volume Collection

March 2022 traffic data was collected at four (4) intersections along Barta Road to support the development of the TIS using JAMAR boards. This data was used to amend previously acquired counts collected in March 2021 for the DIA Annex project. The intersections counted are shown in Figure 2-1.

TMCs were conducted at the locations shown in Figure 2-1. The locations for the intersection counts are listed below in Table 2-3. Figure 2-2 and Figure 2-3 present diagrams of the volumes counted and balanced at specific intersections within the study areas (refer to Appendix A for the original count data). The counts were collected during the AM and PM peak hours over a two-day period of a typical Tuesday and Wednesday. This information was input into the existing conditions model. Data was compared to previous data collected and adjusted for anticipated volumes.

	Table 2-3: Traffic Volume Count Locations – March 2022						
Count ID	Intersection	Count Date	Туре				
4R	Barta Road / Fairfax County Parkway (VA 286) NB Ramps	2022-03-02	TMC (JAMAR)				
5R	Barta Road / Fairfax County Parkway (VA 286) SB Ramps	2022-03-01	TMC (JAMAR)				
12	Barta Road with Heller Road	2022-03-02	TMC (JAMAR)				
13	Barta Road with Rolling Road	2022-03-01	TMC (JAMAR)				



2.2 Existing Year (2022) Traffic Volumes

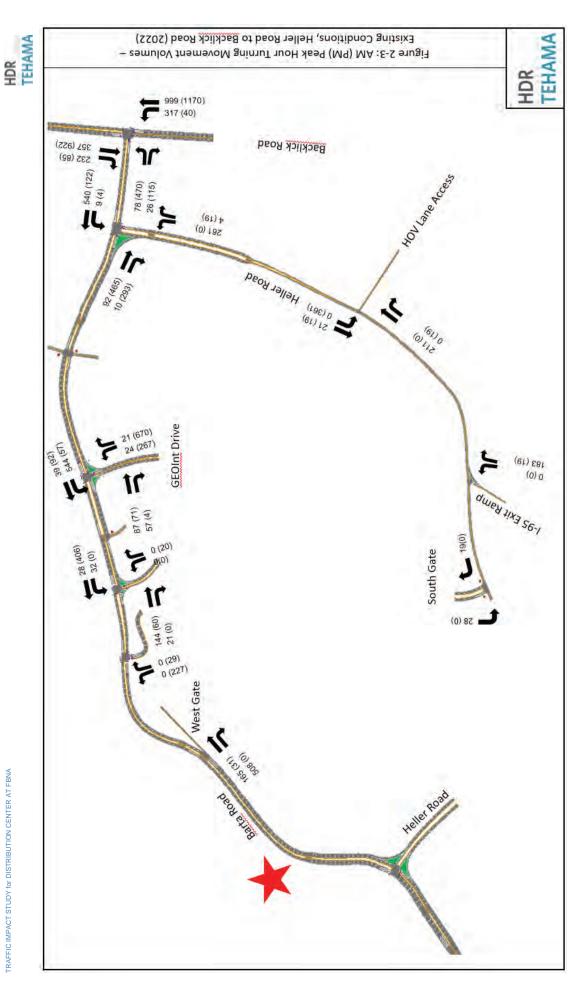

A review of the traffic count data indicates that the weekday morning and afternoon peak hours are not consistent among the study intersections. The respective peak hour for each intersection is shown in Table 2-4.

Table 2-4: Peak Hours for Existing Counts (2021)					
Count	Location	Peak	Hour		
ID	Location	AM	РМ		
March 2	2021 Counts				
1	Barta Road with Geoint Drive	6:45–7:45	4:30–5:30		
2	Barta Road with Heller Road	7:15-8:15	3:45-4:45		
3	Barta Road with Backlick Road	7:00-8:00	4:00-5:00		
4-5	Barta Road with Fairfax County Parkway (VA 286) NB Ramps (WB Barta Road)	6:45–7:45	3:45-4:45		
6	Heller Road with I-95 NB/I-95 SB Express Lane	12:00-1:00	5:45-6:45		
7	Heller Road with I-95 SB	7:45-8:45	3:00-4:00		
8	Heller Road with NGA South Gate (inbound)	7:30-8:30	8:45-9:45		
9	Barta Road at NGA West Gate Entry	9:30-10:30	-		
10	Barta Road at NGA West Gate Exit	-	5:45-6:45		
11	GEOINT Drive Visitor Parking Lot Access Lane	7:15-8:15	2:45-3:45		
March 2	022 Counts				
4R	Barta Road with Fairfax County Parkway (VA 286) NB Ramps	7:15-8:15	4:15-5:15		
5r	Barta Road with Fairfax County Parkway (VA 286) SB Ramps	7:30-8:30	4:00-5:00		
12	Barta Road with Heller Road	7:15-8:15	4:15-5:15		
13	Barta Road with Rolling Road	7:45-8:45	4:30-5:30		

Figures 2-2 through Figure 2-3 show the Existing morning (AM) and afternoon (PM) peak hour traffic volumes.

tepa.com

tepa.com

2.3 Traffic Signal Timing Data

Signal timing was not provided by the agencies. Timing was observed during traffic counts and noted. Total cycle length, protected / permissive movements, and phase lengths were collected and modelled within Synchro 11. Where timing and cycle length information was not recorded in the field, Synchro "optimized" conditions were used in the model. See Appendix A for field notes taken.

3 OPERATIONAL ANALYSES

3.1 Methodology

This study includes the operational analysis of the existing year 2022 conditions, future 2022 conditions with 600 new staff (proposed Distribution Center) and 650 new staff (proposed DIA Annex). The future year analyses were performed for only the 2023 Build condition. The operating condition of the study intersections were evaluated using the Synchro/SimTraffic micro-simulation software.

Different MOEs were evaluated while performing the operational condition. The intersection delay and LOS were evaluated and presented in this study for the existing, future year build traffic conditions.

The Synchro 11 traffic simulation software program was used to perform intersection and arterial operational analyses. This software provides industry standard analysis for signalized and roundabout intersections. The study area consists of both unsignalized and signalized intersections. The analysis methodologies are described in the following sections.

3.2 Description of Level of Service Grades (LOS)

Based on delay or density values, a "grade" or LOS ranging from LOS A, the best, to LOS F, the worst are assigned. The HCM (TRB, 2016) describes service as the following:

LOS A - free flow

Traffic flows at or above the posted speed limit and motorists have complete mobility between lanes. The average spacing between vehicles is about 550 ft (167 m) or 27 car lengths. Motorists have a high level of physical and psychological comfort. The effects of incidents or point breakdowns are easily absorbed. LOS A generally occurs late at night in urban areas and frequently in rural areas.

LOS B - reasonably free flow

LOS A speeds are maintained, maneuverability within the traffic stream is slightly restricted. The lowest average vehicle spacing is about 330 ft (100 m) or 16 car lengths. Motorists still have a high level of physical and psychological comfort.

LOS C - stable flow, at or near free flow

Ability to maneuver through lanes is noticeably restricted and lane changes require more driver awareness. Minimum vehicle spacing is about 220 ft (67 m) or 11 car lengths. Most experienced

drivers are comfortable, roads remain safely below but efficiently close to capacity, and posted speed is maintained. Minor incidents may still have no effect but localized service will have noticeable effects and traffic delays will form behind the incident. This is the target LOS for some urban and most rural highways.

LOS D - approaching unstable flow

Speeds slightly decrease as traffic volume slightly increase. Freedom to maneuver within the traffic stream is much more limited and driver comfort levels decrease. Vehicles are spaced about 160 ft (50m) or 8 car lengths. Minor incidents are expected to create delays. Examples are a busy shopping corridor in the middle of a weekday, or a functional urban highway during commuting hours. It is a common goal for urban streets during peak hours, as attaining LOS C would require prohibitive cost and societal impact in bypass roads and lane additions.

LOS E - unstable flow, operating at capacity

Flow becomes irregular and speed varies rapidly because there are virtually no usable gaps to maneuver in the traffic stream and speeds rarely reach the posted limit. Vehicle spacing is about 6 car lengths, but speeds are still at or above 50 mi/h(80 km/h). Any disruption to traffic flow, such as merging ramp traffic or lane changes, will create a shock wave affecting traffic upstream. Any incident will create serious delays. Drivers' level of comfort become poor. This is a common standard in larger urban areas, where some roadway congestion is inevitable.

LOS F - forced or breakdown flow

Every vehicle moves in lockstep with the vehicle in front of it, with frequent slowing required. Travel time cannot be predicted, with generally more demand than capacity. A road in a constant traffic jam is at this LOS, because LOS is an average or typical service rather than a constant state. For example, a highway might be at LOS D for the AM peak hour, but have traffic consistent with LOS C some days, LOS E or F others, and come to a halt once every few weeks.

Figure 3-1 shows the roadway traffic condition corresponding to the LOS letter grades. The goal of this study is to ensure study intersections would operate at an acceptable LOS D or better in the future build year.

HDR TEHAMA

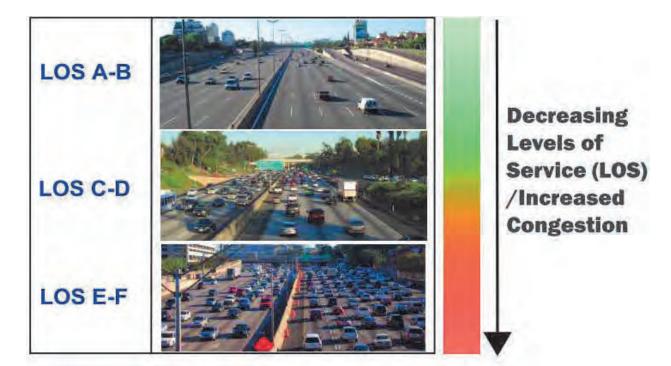


Figure 3-1: Level of Service (LOS) Conditions

3.3 Analysis Methodology for STOP Controlled Intersections

The capacity analysis procedures provide an 'approach delay' for the stop sign controlled approaches to the unsignalized intersections. The intersection LOS "grades" for two-way stop-controlled intersections are as follows in Table 3-1:

Table 3-1: STOP Controlled Intersection Level of Service (LOS) Criteria				
Average Control Delay (sec/veh)				
< 10				
10 to 15				
15 to 25				
25 to 35				
35 to 50				
> 50				

Source: Highway Capacity Manual (TRB, 2016)

3.4 Analysis Methodology for SIGNAL Controlled Intersections

At a signalized intersection, the total delay is dependent upon a number of factors, including when a driver approaches the intersection, the driver's position in the queue and the traffic signal cycle length and green times. The control delay for a signalized intersection is determined for each lane group and aggregated for each approach and for the intersection as a whole.

Table 3-2 below presents the LOS criteria for signalized intersections (based on HCM), which is directly related to the overall intersection control delay value. The intersection LOS for signalized intersections are as follows:

Table 3-2: SIGNAL Controlled Intersection Level of Service (LOS) Criteria				
Level of Service (LOS)	Average Control Delay (sec/veh)			
А	< 10			
В	10 to 20			
С	20 to 35			
D	35 to 55			
E	55 to 80			
F	> 80			

Source: Highway Capacity Manual (TRB, 2016)

The operational analyses at each study area intersection, for each individual alternative, were evaluated based on these signalized intersection delay thresholds.

4 EXISTING CONDITIONS

4.1 Existing Geometric Configuration and Intersections

The study areas have been defined to include the development's area of influence shown below in Figure 4-1.

Figure 4-1: Analyzed Intersections for Distribution Center preferred location

Figure 4-2 presents the lane configurations for intersections within the study area under existing conditions for FBNA. Existing conditions in this report refer to the current conditions as of April 2022. Site visits were conducted in March 2021 and March 2022 to document the lane configurations in place at that time.

	В	С	D
E	F	G	Н
	Battatte		
I	J	К	Р
Tot Below it Totevaloh			
Q	R		

Figure 4-2:

Existing Lane Configurations, Fort Belvoir North Area

4.2 Existing Operational Analysis

As previously discussed above, a traffic study was completed in June 2021 for the DIA Annex. Counts for this previous study were performed in March 2021, during a time that experienced decreased traffic as a result of the Covid-19 pandemic. During this time, it was assumed that a portion of FBNA staff worked remotely.

The existing peak hour traffic volume (AM peak and PM peak hours) (Figures 2-2 and 2-3) and the existing lane-use configuration (Figures 4-2) were used in performing the existing (2022) operational analysis. The existing (2022) peak hour volumes were adjusted using a combination of 2021 DIA Annex TIS assumptions, March 2022 counts, and site observations.

4.2.1 Existing (2022) Intersection Operational Analysis

The AM and PM peak hour intersection operational analyses results were evaluated using the Synchro 11 model. They are presented in Table 4-1. The existing year Synchro output files are included in Appendix B.

Due to the nature of the anticipated additional trips, the weekday AM and PM peak periods were the focus of this study. Total volume counts system-wide were calculated from the 2021 intersection (TMC) and ATR data. The following peak hours were identified and compared to Table 2-3.

FBNA

- AM peak period: 7:30am-8:30am;
- PM peak period: 4:15pm-5:15pm.

Table 4-1: Existing Intersection Operational Analysis – FBNA							
latera etien		O an aliand	AM	PM	AM	PM	
Intersection ID	Intersection	(Y/N)	ignalized (Y/N) Delay (s/veh)		LOS		
В	Barta Road / Heller Road	Y	2.5	0.4	А	А	
С	West Gate Entrance	N	-	-	А	А	
D	Barta Road / Parking Garage Exit	Y	0.0	9.5	А	А	
E	Barta Road / Main Guest Access	N	-	-	А	А	
F	Barta Road / GEOINT Drive	Y	5.5	10.4	А	В	
G	Barta Road / Heller Road	Y	9.8	0.4	А	А	
н	Barta Road / Backlick Road	Y	7.9	18.9	А	В	
I	Heller Road / HOV Entrance Ramp	N	-	-	А	А	
J	I-95 Exit Ramp / Heller Road	N	-	-	А	А	
К	South Gate Entrance	N	-	-	А	А	
Р	Barta Road / Rolling Road	Y	8.3	9.3	А	А	
Q	Barta Road / SB VA 286 Ramps	Y	6.2	8.4	А	А	
R	Barta Road / NB VA 286 Ramps	Y	9.0	11.9	А	В	

Existing

• All intersections (AM and PM) operate at LOS B or better.

5 **BUILD CONDITIONS**

5.1 Proposed Site Development

A location within FBNA has been selected to accommodate the proposed construction and operation of a new 525,000 square foot Distribution Center consolidated complex consisting of a high bay warehouse and a two-story administrative building with associated parking and covered storage for approximately 600 personnel. No changes to existing roadways have been identified. New infrastructure improvements are assumed to be limited to the building, parking structure, intersection along Barta Road, access lanes, and associated site improvements. In addition to the Distribution Center, trips associated with a DIA Annex at FBNA have also been included in modeling.

5.2 Geometric Configuration

No changes in existing roadway geometrics were assumed for this study. A new signalized intersection was modeled at the location, Proposed Distribution Center Entrance, shown on Figure 4-1.

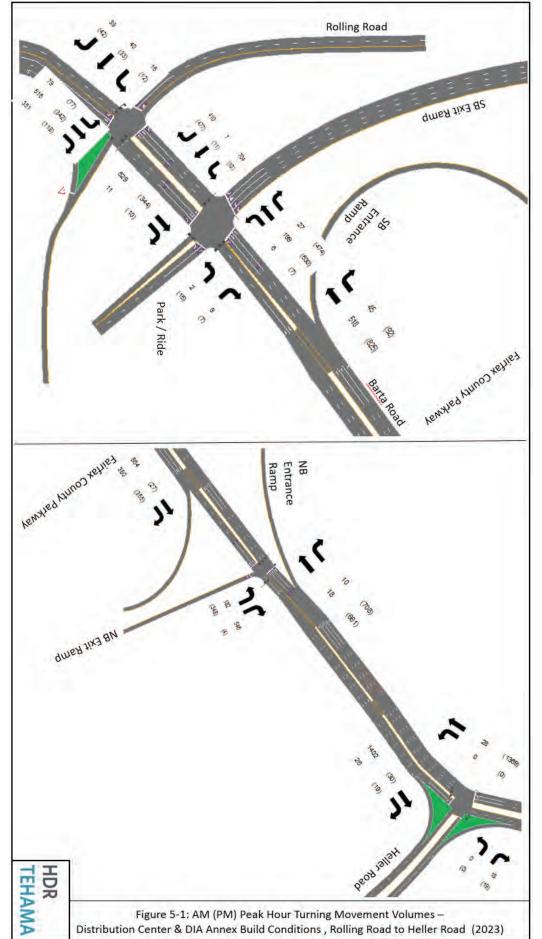
5.3 Trip generation

The Distribution Center construction is estimated to generate 600 additional staff positions. The analysis assumes that each additional staff member generates 0.9 additional AM and PM peak hour trip for both 600 additional staff (Distribution Center) and one (1) additional AM and PM peak hour trip for each 650 additional staff (DIA Annex). In addition, eighteen (18) truck trips have been modeled for both the AM and PM peak hours. The distribution between site access points was determined utilizing the March 2021 count data.

Table 5-1: Trip Generation						
Build	Build Scenario Description Trips					
Development		АМ	РМ			
Distribution Center	600 Additional Staff	540	540			
DIA Annex	650 Additional Staff	650	650			

5.4 Distribution of Access Volumes

Estimated percentages of entering and exiting traffic to the DIA Annex were calculated using the March 2021 field counts. Trip distribution for the Distribution Center was estimated based on site access, entrance location, and estimated distribution of new DIA Annex traffic. Table 4-1 and Table 4-2 summarize the distribution of entering and exiting vehicle percentages for each location during peak



hours. It was noted that the existing South Gate traffic occurred during off peak times in 2021. The West Gate off Barta Road, however, does not have direct access to the DIA Annex site location. Therefore, this study assumes that the South Gate would provide an alternative access point. The percentage shown below in Table 5-2 and Table 5-3 will be used to distribute expected new trips generated by the new facility for normal conditions.

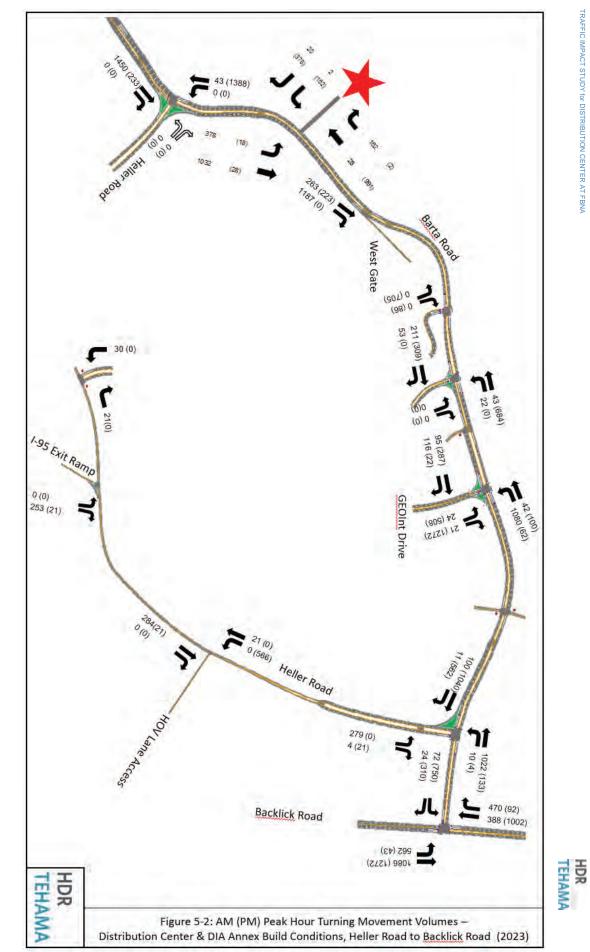

Table 5-2: Modeled Gate Access Volumes (%) – Distribution Center						
	Description	АМ	РМ			
	Belvoir Gate (Enter) / Meade Gate (Exit)					
New	New Gate via Backlick Road	30%	30%			
New	New Gate via VA 286 and Barta Road(EB)	70%	70%			

	Table 5-3: Modeled Gate Access Volume (%) – DIA Annex	(
Access ID	Description	АМ	РМ
Existing	West Gate / Parking Garage Exit (Barta Road)	0%	0%
Existing	North Gate (GEOINT Drive)	70%	70%
Existing	South Gate (Heller Road)	30%	30%

Figure 5-1 through Figure 5-2 show the total intersection volumes used for the Build condition. No background growth was used for the two alternative sites.

HDR TEHAMA

tepa.com

5.5 General Traffic Operations

Synchro traffic analysis models were created for each of the AM and PM peak periods to analyze traffic operations under existing and full-build conditions. The performance results of these models area presented in this section. Full Synchro reports are provided in Appendix B.

5.5.1 Intersections Analysis

Table 5-4 presents the general traffic operations summary for the Build scenario that includes the Distribution Center and planned DIA Annex.

	Table 5-4: Build Condition (20)	023) Intersecti	on Operationa	l Analysis		
Int.	Intersection	Signalized (Y/N)	600 Adde 650 Adde	Cente	r) +	
ID		ignali	AM	PM	AM	PM
		ى ا	Delay (s	/veh)	LC	S
А	New Entrance / Barta Road	Y	4.9	22.7	А	С
В	Barta Road / Heller Road	Y	4.6	0.9	А	А
С	West Gate Entrance	N	-	-	А	А
D	Barta Road / Parking Garage Exit	Y	0.1	7.7	А	А
E	Barta Road / Main Guest Access	N	8.7	11.4	А	В
F	Barta Road / GEOINT Drive	Y	5.8	66.3	А	E
G	Barta Road / Heller Road	Y	9.8	4.7	А	А
н	Barta Road / Backlick Road	Y	8.5	22.2	А	С
I	Heller Road / HOV Entrance Ramp	N	-	-	А	А
J	I-95 Exit Ramp / Heller Road	N	-	-	А	А
к	South Gate Entrance	N	-	-	А	А
Р	Barta Road / Rolling Road	Y	8.8	9.7	А	А
Q	Barta Road / SB VA 286 Ramps	Y	7.8	9.4	А	А
R	Barta Road / NB VA 286 Ramps	Y	27.7	11.3	С	В

Build Scenario

- All intersections (AM and PM) operate at LOS C or better with the exception of the intersections of:
 - Barta Road /Geoint Drive (LOS E during the PM peak hour) Exiting traffic from Geoint Drive creates queues while waiting to turn on to Barta Road.

6 CONCLUSIONS AND RECOMMENDATIONS

Based on the analysis completed in the above sections, the following conclusions can be made:

Traffic Operations

- Existing Conditions
 - The analysis indicates that all signalized intersections are operating at acceptable levels overall (LOS B or better) at both alternate locations.
 - For the unsignalized intersections, the analysis indicates that the majority of the intersections are operating well.
- Build Scenario
 - FBNA Build Scenario 1 (600 additional personnel Distribution Center; 650 Additional Personnel – DIA Annex; Total 1250)
 - Intersection F (Barta Road/Geoint Drive) The increased left/right turning volumes exiting Geoint Drive (PM) decrease the level of service due to added delay. Intersection PM peak LOS drops from LOS B to LOS E. The following are critical movement:
 - AM WB Barta Road to SB Geoint Drive
 - PM NB Geoint Drive to both EB & WB Barta Road
 - Intersection H (Barta Road/Backlick Drive) The additional AM left turns from the south leg of Backlick Road exceed the capacity of the single turn lane and signal timing plan. Intersection PM peak LOS drops from LOS B to LOS C.
 - PM EB Barta Road to NB Backlick Road
 - PM SB Backlick Road
- Mitigation
 - Some intersection movements above are shown to have a less than desirable LOS. In these cases, geometric improvements in the form of an additional turn lane and signal optimization may be appropriate.
- Pedestrian and Bicycle Operations
 - Pedestrians are provided shared phasing with appropriate traffic phases. No impacts are expected along Barta Road. Additional connections to the new distribution facility may be appropriate with connection across Barta Road.

Based on the modeling results, the existing roadway system build scenario operates at acceptable levels with the construction of the Distribution Center and added personnel. Low level of service at Geoint Drive in the PM would only be anticipated with the construction of the DIA Annex. LOS E is also expected only for exiting vehicles from Geoint Drive.

7 ACRONYMS AND ABBREVIATIONS

ADT	Average Daily Traffic
ATR	Automated Traffic Recorder
DIA	Defense Intelligence Agency
EBL	Eastbound Left
EBR	Eastbound Right
EBT	Eastbound Thru
Ex	Existing
Ft	Foot
НСМ	Highway Capacity Manual
HQ	Headquarters
JV	Joint Venture
LOS	Level of Service
MOE	Measure of Effectiveness
NBL	Northbound Left
NBR	Northbound Right
NBT	Northbound Thru
NGA	National Geospatial-Intelligence Agency
PE	Professional Engineer
S	Seconds
SBL	Southbound Left
SBR	Southbound Right
SBT	Southbound Thru
TIS	Traffic Impact Study
ТМС	Turning Movement Count
TRB	Transportation Research Board
USACE	United States Army Corps of Engineers
veh	Vehicle
v/c	volume to capacity
vpd	vehicles per day
WBL	Westbound Left
WBR	Westbound Right
WBT	Westbound Thru

8 REFERENCES

County of Fairfax, 2021	County of Fairfax, Virginia. 2021. Fairfax County & Franconia-Springfield Parkways: Alternatives Analysis & Long-Term Planning Study.
HDR & Tehama, 2021	Appendix D: Traffic Impact Study to Support National Environmental Policy Act Documentation for DIA HQ Annex, REVISED DRAFT. In <i>Defense</i> <i>Intelligence Agency (DIA) Headquarters (HQ) Annex Environmental</i> <i>Assessment</i> , Fort Belvoir, Virginia, October 2021. Prepared for U.S. Army Corps of Engineers, Baltimore District and U.S. Army Garrison Fort Belvoir. June 2021.
TRB, 2016	Transportation Research Board (TRB) Highway Capacity Manual (HCM), 6th Edition: A Guide for Multimodal Mobility Analysis. Washington, DC: The National Academies Press.

APPENDIX A

Traffic Data

AM Counts

Barta Road at Rolling Road

1-	Mar-22													
	R	olling Roa	ad		Barta			Ramp			Barta			
	F	rom Nort	h	F	From Eas	t	F	rom Sout	:h	F	rom Wes	st	Tot	al Veh.
Start Time	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left		
6:00:00 AM	5	7	2	4	36	0	0	0	0	50	29	2		135
6:15:00 AM	2	8	3	4	29	0	0	0	0	70	26	0		143
6:30:00 AM	6	11	1	2	53	0	0	0	0	67	40	6		186
6:45:00 AM	10	8	2	1	67	0	0	0	0	70	55	4		217
7:00:00 AM	7	14	2	5	54	0	0	0	0	69	82	9		242
7:15:00 AM	16	15	2	2	83	0	0	0	0	88	106	16		328
7:30:00 AM	7	14	1	3	92	0	0	0	0	102	107	24	- T	350
7:45:00 AM	11	15	3	14	102	0	0	0	0	95	110	26		376
8:00:00 AM	11	7	4	4	152	0	0	0	0	87	98	22	- F	385
8:15:00 AM	6	11	1	17	141	0	0	0	0	76	119	19		390
8:30:00 AM	11	7	3	10	123	0	0	0	0	93	107	12		366
8:45:00 AM	16	11	7	7	160	0	0	0	0	86	70	13		370

Barta Road at SB Ramp / Comm Parking

1-Mar-2	2													
	SB R	amp / Co	omme		Barta		C	omm. Lo	ot		Barta			
		Lot		F	rom Eas	st	Fr	om Sou	th	F	rom We	st	-	Total Veh.
Start Time	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left		
5:45:00 AM	19	10	62	0	10	2	2	0	4	6	21	0		141
6:00:00 AM	24	3	65	0	10	3	4	0	0	3	27	0		139
6:15:00 AM	32	1	93	0	20	1	5	0	4	3	43	0		202
6:30:00 AM	39	0	71	4	22	1	3	0	3	4	49	0		196
6:45:00 AM	42	4	97	3	19	0	2	0	2	5	66	0		240
7:00:00 AM	36	1	112	7	30	3	4	0	1	1	109	0		304
7:15:00 AM	79	1	92	3	26	1	3	0	0	4	97	0		306
7:30:00 AM	92	2	104	5	35	2	0	0	0	1	121	0		362
7:45:00 AM	115	2	93	16	44	2	3	0	2	1	104	0		382
8:00:00 AM	112	1	101	4	65	0	3	0	0	5	103	1		395
8:15:00 AM	91	2	98	2	55	2	3	0	0	4	114	0		371
8:30:00 AM	99	1	67	5	72	1	3	0	1	6	87	0		342

Barta Road at NB Ramp

1-Mar-	22												
		NB Ram	C		Barta			NB Ramp)		Barta		
	F	From Nort	:h	F	From Eas	t	F	rom Sout	th	F	rom Wes	st	Total Veh.
Start Time	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	
5:45:00 AM	0	0	0	3	7	0	53	0	15	15	64	0	157
6:00:00 AM	0	0	0	1	4	0	40	0	19	23	93	0	180
6:15:00 AM	0	0	0	0	3	0	55	0	20	40	94	0	212
6:30:00 AM	0	0	0	1	2	0	48	0	19	39	134	0	243
6:45:00 AM	0	0	0	1	4	0	38	0	30	53	121	0	247
7:00:00 AM	0	0	0	3	2	0	57	0	26	82	121	0	291
7:15:00 AM	0	0	0	2	7	0	67	0	35	87	107	0	305
7:30:00 AM	0	0	0	3	3	0	39	0	39	95	151	0	330
7:45:00 AM	0	0	0	1	1	0	48	0	48	107	96	0	301
8:00:00 AM	0	0	0	0	7	0	51	0	60	91	115	0	324
8:15:00 AM	0	0	0	3	7	0	40	1	53	92	108	0	304
8:30:00 AM	0	0	0	1	5	0	36	0	65	69	96	0	272

Barta Road at Heller Road

1-Mar-	22												
		4			В			4			В		
	F	rom Nor	th	F	rom Eas	st	F	om Sou	th	F	rom We	st	Total Veh.
Start Time	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	
6:00:00 AM	0	0	0	0	0	0	0	0	0	3	0	0	3
6:15:00 AM	0	0	0	0	0	0	0	0	0	3	0	0	3
6:30:00 AM	0	0	0	0	0	0	0	0	0	1	0	0	1
6:45:00 AM	0	0	0	0	0	0	0	0	0	1	0	0	1
7:00:00 AM	0	0	0	0	0	0	0	0	0	1	0	0	1
7:15:00 AM	0	0	0	0	0	0	0	0	0	1	0	0	1
7:30:00 AM	0	0	0	0	0	0	0	0	1	1	0	0	2
7:45:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00:00 AM	0	0	0	0	0	0	0	0	1	2	0	0	3
8:15:00 AM	0	0	0	0	0	0	0	0	0	1	0	0	1
8:30:00 AM	0	0	0	0	0	0	0	0	1	1	0	0	2
8:45:00 AM	0	0	0	0	0	0	0	0	0	1	0	0	1

PM Counts

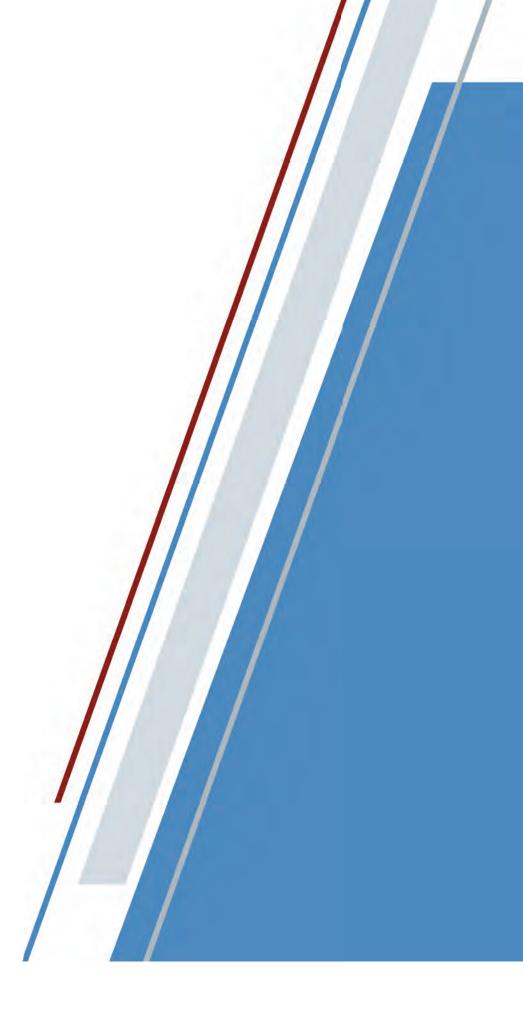
Barta Road at Rolling Road

375	52	57	22	0	0	0	0	781	52	2	4	Z	5:30:00 PM
445	52	105	63	0	0	0	0	205	28	3	L	15	5:15:00 PM
434	81	48	08	0	0	0	0	200	52	9	11	11	5:00:00 PM
333	91	69	02	0	0	0	0	142	15	2	11	6	4:45:00 PM
452	52	28	58	0	0	0	0	163	52	5	4	10	4:30:00 PM
450	52	٤6	69	0	0	0	٢	921	32	2	11	13	4:15:00 PM
607	6٤	۶۱	79	0	0	0	0	503	9L	٢	L	13	4:00:00 PM
327	54	99	09	0	0	0	0	126	9٤	5	G	6	3:45:00 PM
202	91	85	79	0	0	0	0	140	14	٢	٢	14	3:30:00 PM
336	9٤	Z 8	99	0	0	0	0	132	6٤	3	6	11	3:15:00 PM
320	81	92	72	0	0	0	0	122	91	0	g	6	3:00:00 PM
324	15	08	48	0	0	0	0	144	11	4	6	01	2:45:00 PM
	IJЭЛ	Πhru	7dpi7	IJЭЛ	nıyı	7dpi7	ДЭД	nıqT	Right	IJЭЛ	Thru	Right	Start Time
Total Veh.	te	eeW mo	Ч	- yı	nos wo.	Ъ	1	rom Eas	Н	Ч	hoN mo	Ч	
		Batta		0	ImsA 88	S		Batta		pe	soA puill	ЬΡ	
												Var-22	N-2-N

Barta Road at SB Ramp / Comm Parking

													22	2-Mar-S
.fəV lstol	L	t	Barta Barta	US .		nos mo. המשי בימ	-	ţ	Barta rom Eas	F		amsЯ 83 rom Nort	- 	
		ЦЭЛ	ուղ	Fight	IJЭЛ	Thru	thgiЯ	IJЭЛ	Thru	Fight	1)ə7	Тhru	IdpiR	Start Time
295		0	82	ŀ	0	0	ł	5	٤Z	33	5	ŀ	100	2:45:00 PM
348	4	0	22	0	0	0	0	0	96	92	5	0	86	3:00:00 PM
316		0	100	ŀ	5	0	5	0	82	52	4	ŀ	105	3:15:00 PM
292	2	0	63	5	0	ŀ	0	ŀ	١L	33	4	0	211	3:30:00 PM
300]	0	09	3	g	0	F	4	65	98	4	5	63	3:45:00 PM
928	7	0	58	F	4	0	2	F	105	64	S	F	126	4:00:00 PM
ELE	7	0	63	2	4	0	0	3	102	40	4	9	211	4:15:00 PM
386	-	0	76	3	S	0	F	2	131	31	0	3	911	4:30:00 PM
321	2	0	72	3	2	0	4	F	102	13	F	5	811	4:45:00 PM
368		ŀ	26	2	4	0	0	0	811	52	ŀ	3	211	5:00:00 PM
878	2	0	105	2	g	0	ŀ	ŀ	611	53	5	5	121	M9 00:31:6
316		3	69	0	ŀ	0	F	ŀ	100	51	0	5	121	5:30:00 PM

Barta Road at NB Ramp


												22	2-Mar-2
		Barta	-		lmeA an	_		Barta	-		ImeA al	-	
Total Veh.	15	səw mo		41	nos wo	u-l	1	sed mor	-	ų:	non mo		
	ЦЭЛ	nıqT	Right	ЦЭ	Thru	Right	ЦЭД	nıqT	Right	ДЭД	nıqT	Right	Start Time
540	0	8	99	44	0	3	0	67	02	0	0	0	2:45:00 PM
345	0	8	٤Z	99	0	5	0	26	901	0	0	0	M9 00:00:8
268	0	10	83	89	0	5	0	29	٤Z	0	0	0	8:15:00 PM
172	0	g	99	23	0	5	0	92	06	0	0	0	3:30:00 PM
526	0	01	72	46	0	F	0	22	96	0	0	0	8:45:00 PM
596	0	3	69	90	0	5	0	89	104	0	0	0	4:00:00 PM
321	0	9	83	78	0	5	0	22	88	0	0	0	M9 00:31:4
302	0	8	۶۱	82	0	0	0	25	82	0	0	0	4:30:00 PM
262	0	9	06	62	0	ŀ	0	44	LL	0	0	0	4:45:00 PM
325	0	L	101	100	0	ŀ	0	38	82	0	0	0	M9 00:00:6
277	0	4	6۱	63	0	F	0	747	١L	0	0	0	M9 00:31:0
262	0	10	26	82	0	0	0	43	92	0	0	0	M9 00:05:5

Barta Road at Heller Road

										Ramp	BN noito	t Interse	movements a
0	0	0	0	0	0	0	0	43	92	0	0	0	5:30:00 PM
L L	0	0	0	0	0	F	0	747	12	0	0	0	5:15:00 PM
L J	0	0	0	0	0	ŀ	0	38	82	0	0	0	5:00:00 PM
L L	0	0	0	0	0	ŀ	0	44	LL	0	0	0	4:45:00 PM
0	0	0	0	0	0	0	0	22	82	0	0	0	4:30:00 PM
5	0	0	0	0	0	5	0	99	88	0	0	0	4:15:00 PM
5	0	0	0	0	0	5	0	89	104	0	0	0	4:00:00 PM
L J	0	0	0	0	0	ŀ	0	22	96	0	0	0	3:45:00 PM
5	0	0	0	0	0	2	0	92	06	0	0	0	3:30:00 PM
5	0	0	0	0	0	2	0	29	٤Z	0	0	0	3:15:00 PM
5	0	0	0	0	0	2	0	26	90 L	0	0	0	3:00:00 PM
7	0	0	0	0	0	3	0	67	02	0	0	0	2:45:00 PM
	IJЭЛ	nıqT	Right	₽	Thru	* idpiЯ	ДЭЛ	* มากโ	* JhbiA	дәд	ուղ	Right	Start Time
Total Veh.	12	ew mor	Ч	ų:	iuo2 mo	Ъ	ł	rom Eas	4	Ч	ron Nort	Ы	
		Bata			Heller			Batta			Heller		
												52	2-Mar-

APPENDIX B

Synchro Files

AM Existing LOS

	1	۲	*	4	4	*
Lane Group	NBL	NBR	NET	NER	SWL	SWT
Lane Configurations	Y		† †			^
Traffic Volume (vph)	214	205	469	0	0	18
Future Volume (vph)	214	205	469	0	0	18
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	0.95	1.00	1.00	0.91
Frt	0.934	1.00	0.75	1.00	1.00	0.71
Flt Protected	0.975					
Satd. Flow (prot)	1696	0	3539	0	0	5085
Flt Permitted	0.975	0	3337	0	0	0000
Satd. Flow (perm)	1696	0	3539	0	0	5085
	1090		2024		0	5065
Right Turn on Red	100	Yes		Yes		
Satd. Flow (RTOR)	128		20			20
Link Speed (mph)	30		30			30
Link Distance (ft)	765		397			221
Travel Time (s)	17.4		9.0			5.0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	233	223	510	0	0	20
Shared Lane Traffic (%)						
Lane Group Flow (vph)	456	0	510	0	0	20
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12	3	6			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	10		10			10
Two way Left Turn Lane	10		10			10
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	60	60	1.00	60	60	1.00
Turn Type	Prot	00	NA	00	00	NA
Protected Phases	2		4			8
Permitted Phases	00 F		00 F			00 5
Minimum Split (s)	22.5		22.5			22.5
Total Split (s)	22.5		22.5			22.5
Total Split (%)	50.0%		50.0%			50.0%
Maximum Green (s)	18.0		18.0			18.0
Yellow Time (s)	3.5		3.5			3.5
All-Red Time (s)	1.0		1.0			1.0
Lost Time Adjust (s)	0.0		0.0			0.0
Total Lost Time (s)	4.5		4.5			4.5
Lead/Lag						
Lead-Lag Optimize?						
Walk Time (s)	7.0		7.0			7.0
Flash Dont Walk (s)	11.0		11.0			11.0
Pedestrian Calls (#/hr)	5		5			5
Act Effct Green (s)	18.0		18.0			18.0
Actuated g/C Ratio	0.40		0.40			0.40
v/c Ratio	0.60		0.36			0.01
Control Delay	11.6		6.7			8.2
Queue Delay	0.0		0.0			0.0
Total Delay	11.6		6.7			8.2

	1	۲	×	4	¥	*	
Lane Group	NBL	NBR	NET	NER	SWL	SWT	
LOS	В		А			А	
Approach Delay	11.6		6.7			8.2	
Approach LOS	В		А			А	
Queue Length 50th (ft)	59		34			1	
Queue Length 95th (ft)	131		51			4	
Internal Link Dist (ft)	685		317			141	
Turn Bay Length (ft)							
Base Capacity (vph)	755		1415			2034	
Starvation Cap Reductn	0		0			0	
Spillback Cap Reductn	0		0			0	
Storage Cap Reductn	0		0			0	
Reduced v/c Ratio	0.60		0.36			0.01	
Intersection Summary							
Area Type:	Other						
Cycle Length: 45							
Actuated Cycle Length: 45							
Offset: 0 (0%), Referenced	I to phase 2:I	VBL and 6	:, Start o	of Green			
Natural Cycle: 45							
Control Type: Pretimed							
Maximum v/c Ratio: 0.60							
Intersection Signal Delay:	9.0			In	tersectio	n LOS: A	
Intersection Capacity Utiliz	ation 44.9%			IC	U Level	of Service A	
Analysis Period (min) 15							
Splits and Phases: 13:							
🗖 Ø2 (R)						Ø4	

🖊 🗖 Ø2 (R)	≯ ∅4
22.5 s	22.5 s
	¥ _{Ø8}
	22.5 s

Lanes, Volumes, Timings 17: VA 286 SB Ramps

	, st	×	2	*	×	۲	3	×	4	<u>k</u>	*	*~
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ኘኘ	eî 👘	1	1		1		† †	1	5	^	
Traffic Volume (vph)	396	7	410	2	0	9	0	442	11	6	199	0
Future Volume (vph)	396	7	410	2	0	9	0	442	11	6	199	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.97	0.95	0.95	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt		0.855	0.850			0.850			0.850			
Flt Protected	0.950			0.950						0.950		
Satd. Flow (prot)	3433	1513	1504	1770	0	1583	0	3539	1583	1770	3539	0
Flt Permitted	0.950			0.610						0.478		
Satd. Flow (perm)	3433	1513	1504	1136	0	1583	0	3539	1583	890	3539	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		219	227			36			36			
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		872			347			301			374	
Travel Time (s)		19.8			7.9			6.8			8.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	430	8	446	2	0	10	0	480	12	7	216	0
Shared Lane Traffic (%)		-	49%		-		-					
Lane Group Flow (vph)	430	227	227	2	0	10	0	480	12	7	216	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Lon	24	rugin	Lon	24	rtigitt	Lon	12	rugin	Lon	12	rugnu
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		10			10			10			10	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	60		60	60		60	60		60	60		60
Turn Type	Perm	NA	Perm	Perm		Perm	00	NA	Perm	Perm	NA	00
Protected Phases		6	1 0.111					4			8	
Permitted Phases	6	0	6	2		2			4	8	0	
Minimum Split (s)	22.5	22.5	22.5	22.5		22.5		22.5	22.5	22.5	22.5	
Total Split (s)	22.5	22.5	22.5	22.5		22.5		22.5	22.5	22.5	22.5	
Total Split (%)	50.0%	50.0%	50.0%	50.0%		50.0%		50.0%	50.0%	50.0%	50.0%	
Maximum Green (s)	18.0	18.0	18.0	18.0		18.0		18.0	18.0	18.0	18.0	
Yellow Time (s)	3.5	3.5	3.5	3.5		3.5		3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0		1.0		1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5		4.5		4.5	4.5	4.5	4.5	
Lead/Lag	1.0	7.0	4.0	7.0		7.0		7.0	7.0	7.0	7.0	
Lead-Lag Optimize?												
Walk Time (s)	7.0	7.0	7.0	7.0		7.0		7.0	7.0	7.0	7.0	
Flash Dont Walk (s)	11.0	11.0	11.0	11.0		11.0		11.0	11.0	11.0	11.0	
Pedestrian Calls (#/hr)	5	5	5	5		5		5	5	5	5	
Act Effct Green (s)	18.0	18.0	18.0	18.0		18.0		18.0	18.0	18.0	18.0	
Actuated g/C Ratio	0.40	0.40	0.40	0.40		0.40		0.40	0.40	0.40	0.40	
v/c Ratio	0.40	0.40	0.40	0.40		0.40		0.40	0.40	0.40	0.40	
Control Delay	10.1	3.2	3.0	8.0		1.0		4.6	0.02	9.8	8.9	
Queue Delay	0.0	0.0	0.0	0.0		0.0		4.0	0.2	9.0	0.9	
Total Delay	10.1	3.2	3.0	8.0		1.0		4.6	0.0	0.0 9.8	8.9	
	10.1	J.Z	3.0	0.0		1.0		4.0	0.2	7.0	0.7	

Lanes, Volumes, Timings 17: VA 286 SB Ramps

	- 1	\mathbf{x}	2	-	×	ť	3	×	~	ŝ,	*	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
LOS	В	А	А	А		А		А	А	А	А	
Approach Delay		6.5			2.2			4.5			9.0	
Approach LOS		А			А			А			А	
Queue Length 50th (ft)	37	1	0	0		0		13	0	1	12	
Queue Length 95th (ft)	61	32	30	3		2		20	m0	m2	m31	
Internal Link Dist (ft)		792			267			221			294	
Turn Bay Length (ft)												
Base Capacity (vph)	1373	736	737	454		654		1415	654	356	1415	
Starvation Cap Reductn	0	0	0	0		0		0	0	0	0	
Spillback Cap Reductn	0	0	0	0		0		0	0	0	0	
Storage Cap Reductn	0	0	0	0		0		0	0	0	0	
Reduced v/c Ratio	0.31	0.31	0.31	0.00		0.02		0.34	0.02	0.02	0.15	
Intersection Summary												
	Other											
Cycle Length: 45												
Actuated Cycle Length: 45												
Offset: 0 (0%), Referenced to	o phase 2:	NWL and	6:SETL,	Start of G	Green							
Natural Cycle: 45												
Control Type: Pretimed												
Maximum v/c Ratio: 0.34												
Intersection Signal Delay: 6.					tersectior							
Intersection Capacity Utilizat	tion 38.9%			IC	U Level	of Service	A					
Analysis Period (min) 15												
m Volume for 95th percent	tile queue i	s metered	i by upstr	eam sign	al.							
Splits and Phases: 17:												
					1.4							
🔎 🖉 🖉 (R)						0 4						

🔎 🖉 Ø2 (R)	Ø4
22.5 s	22.5 s
₩ Ø6 (R)	Ki_Ø8
22.5 s	22.5 s

	-	\mathbf{r}	-	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	A			<u></u>		1
Traffic Volume (vph)	144	0	0	60	0	0
Future Volume (vph)	144	0	0	60	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	1.00	0.95	1.00	1.00
Frt						
Flt Protected						
Satd. Flow (prot)	3539	0	0	3539	0	1863
Flt Permitted						
Satd. Flow (perm)	3539	0	0	3539	0	1863
Link Speed (mph)	30			30	30	
Link Distance (ft)	404			491	211	
Travel Time (s)	9.2			11.2	4.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	157	0	0	65	0	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	157	0	0	65	0	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Right
Median Width(ft)	12			24	0	
Link Offset(ft)	0			6	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15		15	9
Sign Control	Free			Free	Stop	
Intersection Summary						
51	Other					
Control Type: Unsignalized						
Intersection Capacity Utiliza	tion 7.3%			IC	U Level o	of Service
Analysis Dariad (min) 15						

Lanes, Volumes, Timings 25: Rolling Road

	*	*	Ľ	>	2	3	×	/	6	*	×	
Lane Group	WBL	WBR	SEL2	SEL	SER	NEL	NET	NER	SWL	SWT	SWR	
Lane Configurations				ă.	1	۲	† †	1		† †	1	
Traffic Volume (vph)	0	0	11	40	39	79	434	351	0	518	45	
Future Volume (vph)	0	0	11	40	39	79	434	351	0	518	45	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	0	0		0	0	250		0	0		0	
Storage Lanes	0	0		1	1	1		1	0		1	
Taper Length (ft)	100			100		100			100			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Frt					0.850			0.850			0.850	
Flt Protected				0.950		0.950						
Satd. Flow (prot)	0	0	0	1770	1583	1770	3539	1583	0	3539	1583	
Flt Permitted				0.950		0.441						
Satd. Flow (perm)	0	0	0	1770	1583	821	3539	1583	0	3539	1583	
Right Turn on Red					Yes			Yes			Yes	
Satd. Flow (RTOR)					42			382			49	
Link Speed (mph)	30			30			30			30		
Link Distance (ft)	601			719			925			301		
Travel Time (s)	13.7			16.3			21.0			6.8		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	0	0	12	43	42	86	472	382	0	563	49	
Shared Lane Traffic (%)	-	-							-			
Lane Group Flow (vph)	0	0	0	55	42	86	472	382	0	563	49	
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right	
Median Width(ft)	0	5		12	5		12	5		12	J -	
Link Offset(ft)	0			0			0			0		
Crosswalk Width(ft)	10			10			10			10		
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)	60	60	60	60	60	60		60	60		60	
Turn Type			D.Pm	Prot	Perm	Perm	NA	Perm		NA	Perm	
Protected Phases				6!			4			6!		
Permitted Phases			6!		6	4		4			6	
Minimum Split (s)			22.5	22.5	22.5	22.5	22.5	22.5		22.5	22.5	
Total Split (s)			22.5	22.5	22.5	22.5	22.5	22.5		22.5	22.5	
Total Split (%)			50.0%	50.0%	50.0%	50.0%	50.0%	50.0%		50.0%	50.0%	
Maximum Green (s)			18.0	18.0	18.0	18.0	18.0	18.0		18.0	18.0	
Yellow Time (s)			3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)			1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)				0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)				4.5	4.5	4.5	4.5	4.5		4.5	4.5	
Lead/Lag												
Lead-Lag Optimize?												
Walk Time (s)			7.0	7.0	7.0	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)			11.0	11.0	11.0	11.0	11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)			5	5	5	5	5	5		5	5	
Act Effct Green (s)			5	18.0	18.0	18.0	18.0	18.0		18.0	18.0	
Actuated g/C Ratio				0.40	0.40	0.40	0.40	0.40		0.40	0.40	
v/c Ratio				0.08	0.06	0.26	0.33	0.44		0.40	0.07	
				0.00	0.00	0.20	0.00	0.11		0.10	0.07	

03 Alt 01 AM Existing Adjusted adjusted; assume 60% reporting 10:26 am 04/21/2021 1

Synchro 11 Report Page 6

Lanes, Volumes, Timings 25: Rolling Road

	*	*	4	\searrow	2	3	×	/*	6	*	*	
Lane Group	WBL	WBR	SEL2	SEL	SER	NEL	NET	NER	SWL	SWT	SWR	
Control Delay				8.8	3.8	11.7	10.2	3.2		10.4	3.3	
Queue Delay				0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay				8.8	3.8	11.7	10.2	3.2		10.4	3.3	
LOS				А	А	В	В	А		В	А	
Approach Delay				6.6			7.5			9.8		
Approach LOS				А			А			А		
Queue Length 50th (ft)				8	0	14	42	0		58	0	
Queue Length 95th (ft)				24	12	39	68	38		75	11	
Internal Link Dist (ft)	521			639			845			221		
Turn Bay Length (ft)						250						
Base Capacity (vph)				708	658	328	1415	862		1415	662	
Starvation Cap Reductn				0	0	0	0	0		0	0	
Spillback Cap Reductn				0	0	0	0	0		0	0	
Storage Cap Reductn				0	0	0	0	0		0	0	
Reduced v/c Ratio				0.08	0.06	0.26	0.33	0.44		0.40	0.07	
Intersection Summary												
Area Type: C	Other											
Cycle Length: 45												
Actuated Cycle Length: 45												
Offset: 0 (0%), Referenced to	phase 2:	and 6:SE	ESW, Star	rt of Greei	n							
Natural Cycle: 45												
Control Type: Pretimed												
Maximum v/c Ratio: 0.44												
Intersection Signal Delay: 8.3					tersection							
Intersection Capacity Utilizati	on 34.1%			IC	U Level o	f Service	A					
Analysis Period (min) 15												
Phase conflict between la	ne groups											

Splits and Phases: 25:

	X 04	
	22.5 s	
06 (R)		
22.5 s		

	۶	\mathbf{r}	1	1	Ļ	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	1	5	† †	††	1
Traffic Volume (vph)	0	0	0	673	28	0
Future Volume (vph)	0	0	0	673	28	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	250			150
Storage Lanes	1	1	1			1
Taper Length (ft)	100	-	25			-
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	1.00
Frt				0170	0170	
Flt Protected						
Satd. Flow (prot)	1863	1863	1863	3539	3539	1863
Flt Permitted	.000	1000	1000	0007	0007	1000
Satd. Flow (perm)	1863	1863	1863	3539	3539	1863
Right Turn on Red	1005	Yes	1005	5557	5557	Yes
Satd. Flow (RTOR)		103				103
Link Speed (mph)	30			30	30	
Link Distance (ft)	755			451	30 920	
Travel Time (s)	17.2			451	920 20.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	20.9 0.92	0.92
	0.92	0.92		0.92 732	0.92	
Adj. Flow (vph)	0	U	0	132	30	0
Shared Lane Traffic (%)	0	0	0	700	20	0
Lane Group Flow (vph)	0	0	0	732	30	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			24	6	
Link Offset(ft)	0			-6	6	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane	4.55	4.55	4.55	4.55	4.55	4.55
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	60	60	60			60
Number of Detectors	1	1	1	2	2	1
Detector Template	Left	Right	Left	Thru	Thru	Right
Leading Detector (ft)	20	20	20	100	100	20
Trailing Detector (ft)	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0
Detector 1 Size(ft)	20	20	20	6	6	20
Detector 1 Type	CI+Ex	Cl+Ex	Cl+Ex	CI+Ex	Cl+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)	510	0.0	510	94	94	010
Detector 2 Size(ft)				6	6	
Detector 2 Type				CI+Ex	CI+Ex	
Detector 2 Channel						
Detector 2 Extend (s)				0.0	0.0	
Turn Type	Prot	Perm	Perm	NA	NA	Perm
Protected Phases	4	I CIIII	I CIIII	2	6	I CIIII
Permitted Phases	4	Л	2	Z	0	6
		4	Z			6

04/10/2022

۶	\mathbf{F}	1	1	Ļ	4
EBL	EBR	NBL	NBT	SBT	SBR
4	4	2	2	6	6
5.0	5.0	5.0	5.0	5.0	5.0
22.5	22.5	22.5	22.5	22.5	22.5
22.5	22.5	22.5	22.5	22.5	22.5
50.0%	50.0%	50.0%	50.0%	50.0%	50.0%
18.0	18.0	18.0	18.0	18.0	18.0
3.5	3.5	3.5	3.5	3.5	3.5
1.0	1.0	1.0	1.0		1.0
0.0	0.0	0.0	0.0	0.0	0.0
4.5	4.5	4.5	4.5	4.5	4.5
3.0	3.0	3.0	3.0	3.0	3.0
None	None	C-Max	C-Max		C-Max
7.0	7.0	7.0	7.0	7.0	7.0
11.0	11.0	11.0	11.0	11.0	11.0
5	5	5	5	5	5
			39.6	39.6	
			0.88	0.88	
			0.24	0.01	
			3.4	3.0	
			0.0	0.0	
			3.4	3.0	
			А		
			3.4		
			А		
			0	0	
			109		
675			371	840	
			3114	3114	
			0		
			0.24	0.01	
Other					
I to phase 2:	NBTL an	d 6:SBT,	Start of C	Green	
ordinated					
ordinated 3.4				ntersectio	
					n LOS: A of Service
	4 5.0 22.5 22.5 50.0% 18.0 3.5 1.0 0.0 4.5 3.0 None 7.0 11.0 5 675	4 4 5.0 5.0 22.5 22.5 22.5 22.5 50.0% 50.0% 18.0 18.0 3.5 3.5 1.0 1.0 0.0 0.0 4.5 4.5 3.0 3.0 None None 7.0 7.0 11.0 11.0 5 5 675 Other	4 4 2 5.0 5.0 5.0 22.5 22.5 22.5 22.5 22.5 22.5 50.0% 50.0% 50.0% 18.0 18.0 18.0 3.5 3.5 3.5 1.0 1.0 1.0 0.0 0.0 0.0 4.5 4.5 4.5 3.0 3.0 3.0 None None C-Max 7.0 7.0 7.0 11.0 11.0 11.0 5 5 5 675 5 5 675 Other	4 4 2 2 5.0 5.0 5.0 5.0 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 50.0% 50.0% 50.0% 50.0% 18.0 18.0 18.0 18.0 3.5 3.5 3.5 3.5 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 4.5 4.5 4.5 4.5 3.0 3.0 3.0 3.0 None None C-Max C-Max 7.0 7.0 7.0 7.0 11.0 11.0 11.0 11.0 5 5 5 5 39.6 0.88 0.24	4 4 2 2 6 5.0 5.0 5.0 5.0 5.0 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 50.0% 50.0% 50.0% 50.0% 50.0% 18.0 18.0 18.0 18.0 18.0 3.5 3.5 3.5 3.5 3.5 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 4.5 4.5 4.5 4.5 4.5 3.0 3.0 3.0 3.0 3.0 3.0 None None C-Max C-Max C-Max 7.0 7.0 7.0 7.0 7.0 11.0 11.0 11.0 11.0 11.0 5 5 5 5 5 6 0.88 0.88 0.24 0.01 3.4 3.0 A A 0 0 675 371

	4	1	•	×	×	ŧ۷		
Lane Group	SBL	SBR	NEL	NET	SWT	SWR		
Lane Configurations		77	۳	र्स				
Traffic Volume (vph)	0	28	165	508	0	0		
Future Volume (vph)	0	28	165	508	0	0		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Util. Factor	1.00	0.88	0.95	0.95	1.00	1.00		
Frt		0.850						
Flt Protected			0.950	0.998				
Satd. Flow (prot)	0	2787	1681	1766	0	0		
Flt Permitted			0.950	0.998				
Satd. Flow (perm)	0	2787	1681	1766	0	0		
Link Speed (mph)	30			30	30			
Link Distance (ft)	227			920	549			
Travel Time (s)	5.2			20.9	12.5			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	0	30	179	552	0	0		
Shared Lane Traffic (%)			10%					
Lane Group Flow (vph)	0	30	161	570	0	0		
Enter Blocked Intersection	No	No	No	No	No	No		
Lane Alignment	Left	Right	Left	Left	Left	Right		
Median Width(ft)	12			36	36			
Link Offset(ft)	0			0	0			
Crosswalk Width(ft)	10			10	10			
Two way Left Turn Lane								
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Turning Speed (mph)	15	9	15			9		
Sign Control	Free			Free	Free			
Intersection Summary								
<i>J</i> 1	Other							
Control Type: Unsignalized								
Intersection Capacity Utiliza	tion 27.9%			IC	CU Level o	of Service A	А	
Analysis Poriod (min) 15								

	-#	\mathbf{P}	•	×	*	1
Lane Group	EBL	EBR	NEL	NET	SWT	SWR
Lane Configurations				<u></u>	<u></u>	1
Traffic Volume (vph)	0	0	0	847	205	27
Future Volume (vph)	0	0	0	847	205	27
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	1.00
Frt						0.850
Flt Protected						
Satd. Flow (prot)	0	0	0	3539	3539	1583
Flt Permitted						
Satd. Flow (perm)	0	0	0	3539	3539	1583
Link Speed (mph)	30			30	30	
Link Distance (ft)	818			374	654	
Travel Time (s)	18.6			8.5	14.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	921	223	29
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	0	0	921	223	29
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	60	60	60			60
Sign Control	Free			Free	Free	
Intersection Summary						
21	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	ion 26.7%			IC	U Level	of Service A

	*	۲	×	/	6	*
Lane Group	WBL	WBR	NET	NER	SWL	SWT
Lane Configurations			^	1		<u> </u>
Traffic Volume (vph)	0	0	469	380	0	232
Future Volume (vph)	0	0	469	380	0	232
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	0.95	1.00	1.00	0.91
Frt				0.850		
Flt Protected						
Satd. Flow (prot)	0	0	3539	1583	0	5085
Flt Permitted						
Satd. Flow (perm)	0	0	3539	1583	0	5085
Link Speed (mph)	30		30			30
Link Distance (ft)	815		654			397
Travel Time (s)	18.5		14.9			9.0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	510	413	0	252
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	0	510	413	0	252
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	0	Ŭ	12			12
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	10		10			10
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	60	60		60	60	
Sign Control	Free		Free			Free
Intersection Summary						
Area Type: C	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	ion 44.9%			IC	U Level o	of Service

	_#	\mathbf{P}	•	×	*	~		
Lane Group	EBL	EBR	NEL	NET	SWT	SWR		
Lane Configurations				<u></u>	<u></u>	1		
Traffic Volume (vph)	0	0	0	674	18	10		
Future Volume (vph)	0	0	0	674	18	10		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Util. Factor	1.00	1.00	1.00	0.95	0.91	1.00		
Frt						0.850		
Flt Protected								
Satd. Flow (prot)	0	0	0	3539	5085	1583		
Flt Permitted								
Satd. Flow (perm)	0	0	0	3539	5085	1583		
Link Speed (mph)	30			30	30			
Link Distance (ft)	1042			221	359			
Travel Time (s)	23.7			5.0	8.2			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	0	0	0	733	20	11		
Shared Lane Traffic (%)								
Lane Group Flow (vph)	0	0	0	733	20	11		
Enter Blocked Intersection	No	No	No	No	No	No		
Lane Alignment	Left	Right	Left	Left	Left	Right		
Median Width(ft)	8			0	6			
Link Offset(ft)	0			0	0			
Crosswalk Width(ft)	10			10	10			
Two way Left Turn Lane								
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Turning Speed (mph)	15	9	15			9		
Sign Control	Free			Free	Free			
Intersection Summary								
51	Other							
Control Type: Unsignalized								
Intersection Capacity Utilizat	tion 22.0%			IC	CU Level	of Service	еA	
Analysis Doriod (min) 15								

	L.	J.	1	*	*	~
Lane Group	SBL	SBR	NWL	NWR	NEL	NER
					ሻሻ	
Lane Configurations	`	77		1		· ·
Traffic Volume (vph)	0	28 28	0	7	666 666	8
Future Volume (vph)	0		0	7		1000
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	0	500	0	0
Storage Lanes	1	2	1	1	2	1
Taper Length (ft)	25	0.00	25	1 00	25	1 0 0
Lane Util. Factor	1.00	0.88	1.00	1.00	0.97	1.00
Frt		0.850		0.850		0.850
Flt Protected					0.950	
Satd. Flow (prot)	1863	2787	1863	1583	3433	1583
Flt Permitted					0.950	
Satd. Flow (perm)	1863	2787	1863	1583	3433	1583
Right Turn on Red		Yes		Yes		Yes
Satd. Flow (RTOR)		1920		492		9
Link Speed (mph)	30		30		30	
Link Distance (ft)	570		723		430	
Travel Time (s)	13.0		16.4		9.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0.72	30	0.72	8	724	9
Shared Lane Traffic (%)			Ū	5	121	
Lane Group Flow (vph)	0	30	0	8	724	9
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Right
Median Width(ft)	30	Kiynt	32	Night	32	Night
Link Offset(ft)	30		0		0	
Crosswalk Width(ft)	10		10		10	
Two way Left Turn Lane	1.00	1.00	1.00	1.00	1 00	1.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15	9	15	9
Number of Detectors	0	0	0	0	0	0
Detector Template	Thru	Thru	Thru	Thru	Thru	Thru
Leading Detector (ft)	0	0	0	0	0	0
Trailing Detector (ft)	0	0	0	0	0	0
Turn Type	Prot	pt+ov	Prot	Perm	Prot	Perm
Protected Phases	5	56	4		6	
Permitted Phases				4		6
Detector Phase	5	56	4	4	6	6
Switch Phase	0	00			0	0
Minimum Initial (s)	5.0		5.0	5.0	5.0	5.0
Minimum Split (s)	22.5		22.5	22.5	22.5	22.5
Total Split (s)	15.5		15.5	15.5	19.0	19.0
	31.0%					38.0%
Total Split (%)			31.0%	31.0%	38.0%	
Maximum Green (s)	11.0		11.0	11.0	14.5	14.5
Yellow Time (s)	3.5		3.5	3.5	3.5	3.5
All-Red Time (s)	1.0		1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5		4.5	4.5	4.5	4.5
Lead/Lag	Lead				Lag	Lag

	L.	¥		*	*	4
Lane Group	SBL	SBR	NWL	NWR	NEL	NER
Lead-Lag Optimize?	Yes				Yes	Yes
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Recall Mode	None		None	None	C-Max	C-Max
Walk Time (s)	7.0		7.0	7.0	7.0	7.0
Flash Dont Walk (s)	11.0		11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	0		0	0	0	0
Act Effct Green (s)		47.1		5.5	45.1	45.1
Actuated g/C Ratio		0.94		0.11	0.90	0.90
v/c Ratio		0.01		0.01	0.23	0.01
Control Delay		0.0		0.0	2.6	2.8
Queue Delay		0.0		0.0	0.0	0.0
Total Delay		0.0		0.0	2.6	2.8
LOS		А		А	А	А
Approach Delay					2.6	
Approach LOS					А	
Queue Length 50th (ft)		0		0	0	0
Queue Length 95th (ft)		0		0	92	5
Internal Link Dist (ft)	490		643		350	
Turn Bay Length (ft)				500		
Base Capacity (vph)		2737		732	3096	1429
Starvation Cap Reductn		0		0	0	0
Spillback Cap Reductn		0		0	0	0
Storage Cap Reductn		0		0	0	0
Reduced v/c Ratio		0.01		0.01	0.23	0.01
Intersection Summary						
Area Type:	Other					
Cycle Length: 50						
Actuated Cycle Length: 50)					
Offset: 0 (0%), Referenced		VEL, Stai	rt of Gree	n		
Natural Cycle: 70	1	,				
Control Type: Actuated-Co	oordinated					
Maximum v/c Ratio: 0.23						
Intersection Signal Delay:	2.4			Ir	ntersectio	n LOS: A
Intersection Capacity Utiliz						of Service
Analysis Period (min) 15						
, , , , , , , , , , , , , , , , , , ,						

Splits and Phases: 102:

A Ø5	• 😾 Ø6 (R)	<i>▶</i> [≜] Ø4	
15.5 s	19 s	15.5 s	

Lanes, Volumes, Timings 103: Parking Garage Exit

	-	\mathbf{r}	4	+	•	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations		LDI	VUDE	†	<u>ነው</u> ካካ	
Traffic Volume (vph)	TT 165	0	0	TT 28	0	0
Future Volume (vph)	165	0	0	20	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	1.00	1.00	0.95	0.97	1.00
Frt	0.95	1.00	1.00	0.95	0.97	1.00
Fit Protected						
	3539	0	0	3539	3614	1863
Satd. Flow (prot) Flt Permitted	3039	U	0	3037	3014	1003
	2520	0	0	2520	2/1/	10/0
Satd. Flow (perm)	3539	0	0	3539	3614	1863
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)						
Link Speed (mph)	30			30	30	
Link Distance (ft)	923			533	500	
Travel Time (s)	21.0			12.1	11.4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	179	0	0	30	0	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	179	0	0	30	0	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12	Ũ		12	24	Ũ
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1100	9	15		15	9
Number of Detectors	2	,	10	2	1	, 1
Detector Template	Thru			Thru	Left	Right
Leading Detector (ft)	100			100	20	20
Trailing Detector (ft)					20	20
0	0			0		
Detector 1 Position(ft)	0			0	0	0
Detector 1 Size(ft)	6			6	20	20
Detector 1 Type	CI+Ex			CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0			0.0	0.0	0.0
Detector 1 Queue (s)	0.0			0.0	0.0	0.0
Detector 1 Delay (s)	0.0			0.0	0.0	0.0
Detector 2 Position(ft)	94			94		
Detector 2 Size(ft)	6			6		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA			NA	Prot	Perm
Protected Phases	6			2	4	
Permitted Phases	<u> </u>			_		4
Detector Phase	6			2	4	4
Switch Phase	0			2	Т	г
Minimum Initial (s)	5.0			5.0	5.0	5.0
	5.0			0.0	0.0	5.0

Lanes, Volumes, Timings 103: Parking Garage Exit

	-	\mathbf{Y}	-	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Minimum Split (s)	22.5			22.5	22.5	22.5
Total Split (s)	22.5			22.5	22.5	22.5
Total Split (%)	50.0%			50.0%	50.0%	50.0%
Maximum Green (s)	18.0			18.0	18.0	18.0
Yellow Time (s)	3.5			3.5	3.5	3.5
All-Red Time (s)	1.0			1.0	1.0	1.0
Lost Time Adjust (s)	0.0			0.0	0.0	0.0
Total Lost Time (s)	4.5			4.5	4.5	4.5
Lead/Lag	0,1			т.0	т.0	1.0
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0			3.0	3.0	3.0
Recall Mode	C-Max			C-Max	None	None
Walk Time (s)	7.0			7.0	7.0	7.0
Flash Dont Walk (s)	11.0			11.0	11.0	11.0
Pedestrian Calls (#/hr)	0			0	0	0
. ,	45.0			45.0	0	Ű
Act Effct Green (s)						
Actuated g/C Ratio	1.00			1.00		
v/c Ratio	0.05			0.01		
Control Delay	0.0			0.0		
Queue Delay	0.0			0.0		
Total Delay	0.0			0.0		
LOS	А			А		
Approach Delay						
Approach LOS						
Queue Length 50th (ft)	0			0		
Queue Length 95th (ft)	0			1	100	
Internal Link Dist (ft)	843			453	420	
Turn Bay Length (ft)				0500		
Base Capacity (vph)	3539			3539		
Starvation Cap Reductn	0			0		
Spillback Cap Reductn	0			0		
Storage Cap Reductn	0			0		
Reduced v/c Ratio	0.05			0.01		
Intersection Summary						
Area Type:	Other					
Cycle Length: 45	Other					
Actuated Cycle Length: 45	:					
		NDT and		Start of C	roop	
Offset: 0 (0%), Referenced	a to phase 2:	VBT anu	0:EDI,	Start of G	Teen	
Natural Cycle: 45	ordinatad					
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.05	0.0				toro!!-	
Intersection Signal Delay:					ntersectio	
Intersection Capacity Utiliz	cation 8.3%](CU Level	of Service
Analysis Period (min) 15						

Splits and Phases: 103:

← Ø2 (R)	★ ∕Ø4	
22.5 s	22.5 s	
22.5 s		
22.5 s		<u> </u>

Lanes, Volumes, Timings 104: Visitor Entrance

	-	\mathbf{i}	4	-	-	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations		LDI	VVDL			
Traffic Volume (vph)	↑î → 144	21	1 32	↑↑ 28	1 0	r 0
Future Volume (vph)	144	21	32	28	0	0
Ideal Flow (vphpl)	1900	1900	32 1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	1.00	0.95	1,00	1.00
Frt	0.95	0.90	1.00	0.90	1.00	1.00
Fit Protected	0.901					
	2170	0	0.950	2520	1040	1040
Satd. Flow (prot)	3472	0	1770	3539	1863	1863
Flt Permitted	2172	0	0.638	2520	10/0	10/0
Satd. Flow (perm)	3472	0	1188	3539	1863	1863
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)	23					
Link Speed (mph)	30			30	30	
Link Distance (ft)	533			404	428	
Travel Time (s)	12.1			9.2	9.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	157	23	35	30	0	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	180	0	35	30	0	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	24	5		24	20	5
Link Offset(ft)	-12			8	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane	10			10	10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	9	15	1.00	15	9
Turn Type	NA	,	Perm	NA	Prot	Perm
Protected Phases	4		I CIIII	8	2	I CIIII
Permitted Phases	4		8	0	Z	2
	22.5			22 F	22 F	22.5
Minimum Split (s)			22.5	22.5	22.5	
Total Split (s)	22.5		22.5	22.5	22.5	22.5
Total Split (%)	50.0%		50.0%	50.0%	50.0%	50.0%
Maximum Green (s)	18.0		18.0	18.0	18.0	18.0
Yellow Time (s)	3.5		3.5	3.5	3.5	3.5
All-Red Time (s)	1.0		1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5		4.5	4.5	4.5	4.5
Lead/Lag						
Lead-Lag Optimize?						
Walk Time (s)	7.0		7.0	7.0	7.0	7.0
Flash Dont Walk (s)	11.0		11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	0		0	0	0	0
Act Effct Green (s)	18.0		18.0	18.0	-	-
Actuated g/C Ratio	0.40		0.40	0.40		
v/c Ratio	0.13		0.40	0.40		
Control Delay	6.1		9.0	8.3		
3	0.1		9.0	0.0		
Queue Delay						
Total Delay	6.1		9.0	8.3		

	-	\mathbf{r}	<	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
LOS	А		А	А		
Approach Delay	6.1			8.7		
Approach LOS	А			А		
Queue Length 50th (ft)	12		5	2		
Queue Length 95th (ft)	14		18	7		
Internal Link Dist (ft)	453			324	348	
Turn Bay Length (ft)						
Base Capacity (vph)	1402		475	1415		
Starvation Cap Reductn	0		0	0		
Spillback Cap Reductn	0		0	0		
Storage Cap Reductn	0		0	0		
Reduced v/c Ratio	0.13		0.07	0.02		
Intersection Summary						
Area Type:	Other					
Cycle Length: 45						
Actuated Cycle Length: 45						
Offset: 0 (0%), Referenced	to phase 2:1	VBL and 6	:, Start (of Green		
Natural Cycle: 45						
Control Type: Pretimed						
Maximum v/c Ratio: 0.13						
Intersection Signal Delay:					tersectior	
Intersection Capacity Utiliz	ation 16.3%			IC	U Level o	of Service A
Analysis Period (min) 15						

Splits and Phases: 104:

• √ ø2 (R)	→ Ø4	
22.5 s	22.5 s	
	₹Ø8	
	22.5 s	

	-	\mathbf{i}	4	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u></u>			†	TY I	NDI
Traffic Volume (vph)	87	57	544	39	22	19
Future Volume (vph)	87	57	544	39 39	22	19
Ideal Flow (vphpl)	1900	57 1900	544 1900	39 1900	1900	1900
Lane Util. Factor	0.95	1.00	1.00	0.95	0.97	0.95
Frt	0.90	0.850	1.00	0.93	0.97	0.95
Fit Protected		0.000	0.950		0.930	
	3539	1500	1770	3539	3273	0
Satd. Flow (prot)	3039	1583		3037		U
Flt Permitted	2520	1500	0.581	2520	0.974	0
Satd. Flow (perm)	3539	1583	1082	3539	3273	0
Right Turn on Red		Yes			01	Yes
Satd. Flow (RTOR)		62			21	
Link Speed (mph)	30			30	30	
Link Distance (ft)	491			971	1149	
Travel Time (s)	11.2			22.1	26.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	95	62	591	42	24	21
Shared Lane Traffic (%)						
Lane Group Flow (vph)	95	62	591	42	45	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	24	· · · · ·	Lon	24	24	· ···y···
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane	10			10	10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	2	9	15	2		9
Number of Detectors	2 Thru			2	1	
Detector Template	Thru	Right	Left	Thru	Left	
Leading Detector (ft)	100	20	20	100	20	
Trailing Detector (ft)	0	0	0	0	0	
Detector 1 Position(ft)	0	0	0	0	0	
Detector 1 Size(ft)	6	20	20	6	20	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(ft)	94	2.0	5.0	94	1.0	
Detector 2 Size(ft)	6			6		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel				OIFLA		
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA	Perm	nmint	NA	Prot	
		Feilil	pm+pt			
Protected Phases	6		5	2	4	
Permitted Phases	1	6	2	0	4	
Detector Phase	6	6	5	2	4	
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	

04/10/2022	04/1	0/2022)
------------	------	--------	---

	-	\mathbf{i}	4	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Minimum Split (s)	20.0	20.0	9.5	22.5	15.0	
Total Split (s)	15.0	15.0	20.0	35.0	15.0	
Total Split (%)	30.0%	30.0%	40.0%	70.0%	30.0%	
Maximum Green (s)	10.5	10.5	15.5	30.5	10.5	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	
Lead/Lag	Lag	Lag	Lead			
Lead-Lag Optimize?	Yes	Yes	Yes			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	C-Max	C-Max	None	C-Max	None	
Walk Time (s)	7.0	7.0				
Flash Dont Walk (s)	11.0	11.0				
Pedestrian Calls (#/hr)	0	0				
Act Effct Green (s)	26.1	26.1	41.1	43.8	6.0	
Actuated g/C Ratio	0.52	0.52	0.82	0.88	0.12	
v/c Ratio	0.05	0.07	0.57	0.01	0.11	
Control Delay	11.3	5.8	4.2	1.3	13.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	11.3	5.8	4.2	1.3	13.9	
LOS	В	А	А	А	В	
Approach Delay	9.1			4.0	13.9	
Approach LOS	А			А	В	
Queue Length 50th (ft)	3	0	1	0	3	
Queue Length 95th (ft)	26	23	75	m3	14	
Internal Link Dist (ft)	411			891	1069	
Turn Bay Length (ft)						
Base Capacity (vph)	1848	856	1112	3099	703	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.05	0.07	0.53	0.01	0.06	
Intersection Summary						
Area Type:	Other					
Cycle Length: 50						
Actuated Cycle Length: 50						
Offset: 0 (0%), Referenced	to phase 2	:WBTL ar	nd 6:EBT,	Start of (Green	
Natural Cycle: 60						
Control Type: Actuated-Cod	ordinated					
Maximum v/c Ratio: 0.57						
Intersection Signal Delay: 5	5.5			lr	ntersectior	n LOS: A
Intersection Capacity Utiliza)				of Service A
Analysis Period (min) 15						
m Volume for 95th percer	ntile queue	is metere	d by upst	ream sigr	nal.	
	·			J		

Splits and Phases: 105:

	🗸 Ø2 (R)	•	1 Ø4	
3	5 s		15 s	
	√ Ø5	🛡 🐨 🗹 6 (R)		
2	Os	15 s		

Lanes, Volumes, Timings 106: FBNA CDC Entrance

	≯	-	\mathbf{r}	4	+	*	1	Ť	1	1	Ļ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		† †			† †			•			†	
Traffic Volume (vph)	0	99	7	150	582	15	0	0	4	0	0	0
Future Volume (vph)	0	99	7	150	582	15	0	0	4	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.990			0.997			0.865				
Flt Protected					0.990							
Satd. Flow (prot)	0	3504	0	0	3493	0	0	1611	0	0	1863	0
Flt Permitted					0.990							
Satd. Flow (perm)	0	3504	0	0	3493	0	0	1611	0	0	1863	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		971			260			262			305	
Travel Time (s)		22.1			5.9			6.0			6.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	108	8	163	633	16	0	0	4	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	116	0	0	812	0	0	4	0	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		16			16			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		10			10			10			10	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
J 1	Other											
Control Type: Unsignalized												
Intersection Capacity Utilizati	ion 34.2%			IC	CU Level	of Service	А					

	-	\mathbf{r}	1	-	-	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u> </u>			•™ •↑		
Traffic Volume (vph)	77 92	10	9	H T 540	207	4
Future Volume (vph)	92	10	9	540 540	207	4
Ideal Flow (vphpl)	92 1900	1900	9 1900	540 1900	1900	4
Lane Width (ft)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	1.00	0.95	0.95	1.00	1.00
Frt	0.95	0.850	0.95	0.95	1.00	0.850
Fit Protected		0.000		0.999	0.950	0.000
Satd. Flow (prot)	3539	1689	0	3536	1770	1583
Flt Permitted	3337	1007	0	0.952	0.950	1000
Satd. Flow (perm)	3539	1689	0	3369	1770	1583
Right Turn on Red	2024	Yes	U	3309	1770	Yes
Satd. Flow (RTOR)		11				4
Link Speed (mph)	30	11		30	30	4
Link Speed (mpn) Link Distance (ft)				738	30	
	777 17.7					
Travel Time (s) Peak Hour Factor		0.02	0.00	16.8	7.0	0.02
	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	100	11	10	587	225	4
Shared Lane Traffic (%)	100	11	0	F07	225	4
Lane Group Flow (vph)	100	11 No	0	597	225	4
Enter Blocked Intersection	No	No	No	No	No	N0 Diaht
Lane Alignment	Left	R NA	Left	Left	Left	Right
Median Width(ft)	16			16	36	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane	4.00	0.00	4.00	4.00	4.00	4.00
Headway Factor	1.00	0.92	1.00	1.00	1.00	1.00
Turning Speed (mph)	6	15	15	6	15	9
Number of Detectors	2	1	1	2	1	1
Detector Template	Thru	Right	Left	Thru	Left	Right
Leading Detector (ft)	100	20	20	100	20	20
Trailing Detector (ft)	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0
Detector 1 Size(ft)	6	20	20	6	20	20
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel		_				
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)	94			94		
Detector 2 Size(ft)	6			6		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA	Perm	pm+pt	NA	Prot	Perm
Protected Phases	6		5	2	4	
Permitted Phases		6	2			4
Detector Phase	6	6	5	2	4	4
Switch Phase						

04/10/2022	04/1	0/2022)
------------	------	--------	---

	-	\mathbf{r}	-	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	22.5	22.5	9.5	22.5	22.5	22.5
Total Split (s)	20.0	20.0	8.5	28.5	21.5	21.5
Total Split (%)	40.0%	40.0%	17.0%	57.0%	43.0%	43.0%
Maximum Green (s)	15.5	15.5	4.0	24.0	17.0	17.0
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5		4.5	4.5	4.5
Lead/Lag	Lag	Lag	Lead			
Lead-Lag Optimize?	Yes	Yes	Yes			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	C-Max	C-Max	None	C-Max	None	None
Walk Time (s)	7.0	7.0		7.0	7.0	7.0
Flash Dont Walk (s)	11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/hr)	0	0		0	0	0
Act Effct Green (s)	29.5	29.5		29.5	11.5	11.5
Actuated g/C Ratio	0.59	0.59		0.59	0.23	0.23
v/c Ratio	0.05	0.01		0.30	0.55	0.23
Control Delay	2.2	0.5		6.8	21.5	9.0
Queue Delay	0.0	0.0		0.0	0.0	0.0
Total Delay	2.2	0.5		6.8	21.5	9.0
LOS	A	A		A	С	A
Approach Delay	2.0			6.8	21.3	
Approach LOS	A			A	C	
Queue Length 50th (ft)	7	1		37	58	0
Queue Length 95th (ft)	1	0		75	98	5
Internal Link Dist (ft)	697			658	227	Ŭ
Turn Bay Length (ft)	0,7			500	,	
Base Capacity (vph)	2085	999		1984	601	540
Starvation Cap Reductn	0	0		0	0	0
Spillback Cap Reductn	0	0		0	0	0
Storage Cap Reductn	0	0		0	0	0
Reduced v/c Ratio	0.05	0.01		0.30	0.37	0.01
	0.00	0.01		0.00	0.07	0.01
Intersection Summary	0.11					
Area Type:	Other					
Cycle Length: 50						
Actuated Cycle Length: 50						
Offset: 0 (0%), Referenced	to phase 2	:WBTL ar	nd 6:EBT,	Start of (Green	
Natural Cycle: 55						
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.55						
Intersection Signal Delay:					ntersection	
Intersection Capacity Utiliz	ation 37.5%)		[(CU Level	of Service
Analysis Period (min) 15						
Splits and Phases: 107:						

 ✓ Ø2 (R)
 ✓ Ø4

 28.5 s
 21.5 s

 ✓ Ø5
 ✓ Ø6 (R)

 8.5 s
 20 s

	≯	\mathbf{i}	1	1	Ļ	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ኘሃ		<u> </u>		^	1
Traffic Volume (vph)	72	24	317	999	357	232
Future Volume (vph)	72	24	317	999	357	232
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.97	0.95	1.00	0.95	0.95	1.00
Frt	0.962	0.70	1.00	0.70	0.70	0.850
Flt Protected	0.964		0.950			0.000
Satd. Flow (prot)	3351	0	1770	3539	3539	1583
Flt Permitted	0.964	0	0.405	0007	0007	1303
Satd. Flow (perm)	3351	0	754	3539	3539	1583
Right Turn on Red	0001	Yes	154	0007	0007	Yes
Satd. Flow (RTOR)	26	163				252
Link Speed (mph)	30			30	30	232
Link Speed (mpn)	738			727	965	
Travel Time (s)	16.8			16.5	21.9	
	0.92	0.00	0.02	0.92		0.92
Peak Hour Factor		0.92	0.92		0.92	
Adj. Flow (vph)	78	26	345	1086	388	252
Shared Lane Traffic (%)	104	0	0 / E	1004	200	0E 0
Lane Group Flow (vph)	104	0	345	1086	388	252
Enter Blocked Intersection	No	No	No	No	No	No Diabt
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	36			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane	1 00	1.00	1.00	1.00	1.00	1.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15	N I A	N I A	9
Turn Type	Prot		pm+pt	NA	NA	Perm
Protected Phases	4		5	2	6	
Permitted Phases			2	0.5 5	0.5 -	6
Minimum Split (s)	22.5		9.5	22.5	22.5	22.5
Total Split (s)	15.0		15.0	35.0	20.0	20.0
Total Split (%)	30.0%		30.0%	70.0%	40.0%	40.0%
Maximum Green (s)	10.5		10.5	30.5	15.5	15.5
Yellow Time (s)	3.5		3.5	3.5	3.5	3.5
All-Red Time (s)	1.0		1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5		4.5	4.5	4.5	4.5
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Walk Time (s)	7.0			7.0	7.0	7.0
Flash Dont Walk (s)	11.0			11.0	11.0	11.0
Pedestrian Calls (#/hr)	0			0	0	0
Act Effct Green (s)	10.5		30.5	30.5	15.5	15.5
Actuated g/C Ratio	0.21		0.61	0.61	0.31	0.31
v/c Ratio	0.14		0.51	0.50	0.35	0.38
Control Delay	8.3		7.7	6.5	14.5	4.2
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	8.3		7.7	6.5	14.5	4.2
	0.5		1.1	0.0	14.0	4.Z

	≯	\mathbf{N}	1	1	÷.	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
LOS	А		А	А	В	А
Approach Delay	8.3			6.8	10.5	
Approach LOS	А			А	В	
Queue Length 50th (ft)	12		40	77	45	0
Queue Length 95th (ft)	26		74	113	74	39
Internal Link Dist (ft)	658			647	885	
Turn Bay Length (ft)						
Base Capacity (vph)	724		673	2158	1097	664
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.14		0.51	0.50	0.35	0.38
Intersection Summary						
Area Type:	Other					
Cycle Length: 50						
Actuated Cycle Length: 50						
Offset: 0 (0%), Referenced	to phase 2:	VBTL and	16:SBT, 1	Start of G	reen, Mas	ster Inters
Natural Cycle: 60						
Control Type: Pretimed						
Maximum v/c Ratio: 0.51						
Intersection Signal Delay:				Int	tersection	LOS: A
Intersection Capacity Utiliz	ation 42.8%			IC	U Level c	of Service
Analysis Period (min) 15						
Splits and Phases: 108:						

		▶ _{Ø4}	
35 s		15 s	
▲ Ø5	📕 🕈 Ø6 (R)		
15 s	20 s		

Lanes, Volumes, Timings 109: HOV Lane Entrance

	Ť	۴	L.	÷.	£	*	
Lane Group	NBT	NBR	SBL	SBT	NWL	NWR	
Lane Configurations	•			•			
Traffic Volume (vph)	211	0	0	19	0	0	
Future Volume (vph)	211	0	0	19	0	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt							
Flt Protected							
Satd. Flow (prot)	1863	0	0	1863	0	0	
Flt Permitted							
Satd. Flow (perm)	1863	0	0	1863	0	0	
Link Speed (mph)	30			30	30		
Link Distance (ft)	1082			1015	590		
Travel Time (s)	24.6			23.1	13.4		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	229	0	0	21	0	0	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	229	0	0	21	0	0	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(ft)	0			0	0		
Link Offset(ft)	0			0	0		
Crosswalk Width(ft)	10			10	10		
Two way Left Turn Lane							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)		9	15		15	9	
Sign Control	Free			Free	Stop		
Intersection Summary							
51	Other						
Control Type: Unsignalized							
Intersection Capacity Utilization	tion 14.4%			IC	U Level o	of Service A	А
Analysis Period (min) 15							

	-	\mathbf{r}	4	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	•			•	- Y	
Traffic Volume (vph)	28	0	0	19	0	183
Future Volume (vph)	28	0	0	19	0	183
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt					0.865	
Flt Protected						
Satd. Flow (prot)	1863	0	0	1863	1611	0
Flt Permitted						
Satd. Flow (perm)	1863	0	0	1863	1611	0
Link Speed (mph)	30			30	30	
Link Distance (ft)	839			634	538	
Travel Time (s)	19.1			14.4	12.2	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	30	0	0	21	0	199
Shared Lane Traffic (%)						
Lane Group Flow (vph)	30	0	0	21	199	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	0			0	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15		15	9
Sign Control	Free			Free	Stop	
Intersection Summary						
	Other					
Control Type: Unsignalized						
Intersection Capacity Utiliza	tion 21.3%			IC	CU Level o	of Service
Analysis Period (min) 15				10	2 201010	

	≯	+	+	*	1	1	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		र्स	4		5	1	
Traffic Volume (vph)	0	0	0	19	28	0	
Future Volume (vph)	0	0	0	19	28	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt			0.865				
Flt Protected					0.950		
Satd. Flow (prot)	0	1863	1611	0	1770	1863	
Flt Permitted					0.950		
Satd. Flow (perm)	0	1863	1611	0	1770	1863	
Link Speed (mph)		30	30		30		
Link Distance (ft)		98	839		286		
Travel Time (s)		2.2	19.1		6.5		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	0	0	0	21	30	0	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	0	0	21	0	30	0	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Left	Left	Right	Left	Right	
Median Width(ft)		0	0	-	36	-	
Link Offset(ft)		0	0		0		
Crosswalk Width(ft)		10	10		10		
Two way Left Turn Lane							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)	15			9	15	9	
Sign Control		Free	Stop		Stop		
Intersection Summary							
51	Other						
Control Type: Unsignalized							
Intersection Capacity Utilizat	ion 13.3%			IC	CU Level o	of Service	А

PM Existing LOS

Lanes, Volumes, Timings 13: VA 286 NB Ramps

	*	۲	*	4	4	*
Lane Group	NBL	NBR	NET	NER	SWL	SWT
Lane Configurations	¥		† †			^
Traffic Volume (vph)	348	4	27	0	0	233
Future Volume (vph)	348	4	27	0	0	233
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	0.95	1.00	1.00	0.91
Frt	0.999	1.00	0.70	1.00	1.00	0.71
Flt Protected	0.953					
Satd. Flow (prot)	1773	0	3539	0	0	5085
Flt Permitted	0.953	0	0007	0	0	0000
Satd. Flow (perm)	1773	0	3539	0	0	5085
Right Turn on Red	1115	Yes	5557	Yes	0	5005
Satd. Flow (RTOR)	1	103		103		
	35		35			35
Link Speed (mph)						
Link Distance (ft)	765		397			221
Travel Time (s)	14.9	0.00	7.7	0.00	0.00	4.3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	378	4	29	0	0	253
Shared Lane Traffic (%)	0.00	-		-	-	050
Lane Group Flow (vph)	382	0	29	0	0	253
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		6			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	10		10			10
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9		9	15	
Turn Type	Prot		NA			NA
Protected Phases	2		4			8
Permitted Phases						
Minimum Split (s)	22.5		22.5			22.5
Total Split (s)	22.5		22.5			22.5
Total Split (%)	50.0%		50.0%			50.0%
Maximum Green (s)	18.0		18.0			18.0
Yellow Time (s)	3.5		3.5			3.5
All-Red Time (s)	1.0		1.0			1.0
Lost Time Adjust (s)	0.0		0.0			0.0
Total Lost Time (s)	4.5		4.5			4.5
Lead/Lag	1.0		1.0			1.0
Lead-Lag Optimize?						
Walk Time (s)	7.0		7.0			7.0
Flash Dont Walk (s)	11.0		11.0			11.0
Pedestrian Calls (#/hr)	5		5			5
Act Effct Green (s)	18.0		18.0			18.0
						0.40
Actuated g/C Ratio	0.40		0.40			
v/c Ratio	0.54		0.02			0.12
Control Delay	13.8		13.9			8.8
Queue Delay	0.0		0.0			0.0
Total Delay	13.8		13.9			8.8

Lanes, Volumes, Timings 13: VA 286 NB Ramps

	* 1	۲	×	4	4	*	
Lane Group	NBL	NBR	NET	NER	SWL	SWT	
LOS	В		В			А	
Approach Delay	13.8		13.9			8.8	
Approach LOS	В		В			А	
Queue Length 50th (ft)	71		4			14	
Queue Length 95th (ft)	133		14			25	
Internal Link Dist (ft)	685		317			141	
Turn Bay Length (ft)							
Base Capacity (vph)	709		1415			2034	
Starvation Cap Reductn	0		0			0	
Spillback Cap Reductn	0		0			0	
Storage Cap Reductn	0		0			0	
Reduced v/c Ratio	0.54		0.02			0.12	
Intersection Summary							
Area Type:	Other						
Cycle Length: 45							
Actuated Cycle Length: 45)						
Offset: 0 (0%), Referenced	d to phase 2:I	VBL and 6	:, Start o	of Green			
Natural Cycle: 45							
Control Type: Pretimed							
Maximum v/c Ratio: 0.54							
Intersection Signal Delay:	11.9			In	tersection	n LOS: B	
Intersection Capacity Utiliz	zation 31.5%			IC	U Level	of Service A	
Analysis Period (min) 15							
· · · · · · · · · · · · · · · · · · ·							
Splits and Phases: 13:							
🗕 🗖 Ø2 (R)					1	Ø4	

📕 🗖 Ø2 (R)	≯ ø4	
22.5 s	22.5 s	
	¥ _{Ø8}	
	22.5 s	

Lanes, Volumes, Timings 17: VA 286 SB Ramps

	, st	×	2	*	×	ť	3	×	4	<u>k</u>	*	*~
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ሻሻ	eî Î	1	5		1		††	1	7	^	
Traffic Volume (vph)	10	11	477	15	0	7	0	344	10	7	443	0
Future Volume (vph)	10	11	477	15	0	7	0	344	10	7	443	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.97	0.95	0.95	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt		0.857	0.850			0.850			0.850			
Flt Protected	0.950			0.950						0.950		
Satd. Flow (prot)	3433	1517	1504	1770	0	1583	0	3539	1583	1770	3539	0
Flt Permitted	0.950			0.572						0.530		
Satd. Flow (perm)	3433	1517	1504	1065	0	1583	0	3539	1583	987	3539	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		226	226			36			36			
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		872			347			301			374	
Travel Time (s)		17.0			6.8			5.9			7.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	11	12	518	16	0	8	0	374	11	8	482	0
Shared Lane Traffic (%)			49%	10	Ŭ	Ū		07.1		Ű	102	Ū
Lane Group Flow (vph)	11	266	264	16	0	8	0	374	11	8	482	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	2011	24	. ugu	2011	24	. ugut	2011	12	rugiu	2011	12	rugni
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		10			10			10			10	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA	Perm	Perm		Perm		NA	Perm	Perm	NA	
Protected Phases		6						4			8	
Permitted Phases	6		6	2		2			4	8		
Minimum Split (s)	22.5	22.5	22.5	22.5		22.5		22.5	22.5	22.5	22.5	
Total Split (s)	22.5	22.5	22.5	22.5		22.5		22.5	22.5	22.5	22.5	
Total Split (%)	50.0%	50.0%	50.0%	50.0%		50.0%		50.0%	50.0%	50.0%	50.0%	
Maximum Green (s)	18.0	18.0	18.0	18.0		18.0		18.0	18.0	18.0	18.0	
Yellow Time (s)	3.5	3.5	3.5	3.5		3.5		3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0		1.0		1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5		4.5		4.5	4.5	4.5	4.5	
Lead/Lag												
Lead-Lag Optimize?												
Walk Time (s)	7.0	7.0	7.0	7.0		7.0		7.0	7.0	7.0	7.0	
Flash Dont Walk (s)	11.0	11.0	11.0	11.0		11.0		11.0	11.0	11.0	11.0	
Pedestrian Calls (#/hr)	5	5	5	5		5		5	5	5	5	
Act Effct Green (s)	18.0	18.0	18.0	18.0		18.0		18.0	18.0	18.0	18.0	
Actuated g/C Ratio	0.40	0.40	0.40	0.40		0.40		0.40	0.40	0.40	0.40	
v/c Ratio	0.01	0.36	0.36	0.04		0.01		0.40	0.02	0.02	0.34	
Control Delay	8.2	4.1	4.0	8.7		0.01		14.7	7.9	7.9	8.6	
Queue Delay	0.2	0.0	0.0	0.0		0.4		0.0	0.0	0.0	0.0	
Total Delay	8.2	4.1	4.0	8.7		0.0		14.7	7.9	7.9	8.6	
	U.Z	4.1	4.0	0.7		0.4		14.7	1.7	1.7	0.0	

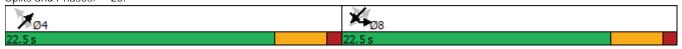
Lanes, Volumes, Timings 17: VA 286 SB Ramps

		\mathbf{x}	2	-	×	ť	3	×	~	ŝ,	*	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
LOS	А	А	А	А		А		В	А	А	А	
Approach Delay		4.1			5.9			14.5			8.6	
Approach LOS		А			А			В			А	
Queue Length 50th (ft)	1	6	6	2		0		55	0	1	34	
Queue Length 95th (ft)	4	41	41	11		1		94	m8	m4	57	
Internal Link Dist (ft)		792			267			221			294	
Turn Bay Length (ft)												
Base Capacity (vph)	1373	742	737	426		654		1415	654	394	1415	
Starvation Cap Reductn	0	0	0	0		0		0	0	0	0	
Spillback Cap Reductn	0	0	0	0		0		0	0	0	0	
Storage Cap Reductn	0	0	0	0		0		0	0	0	0	
Reduced v/c Ratio	0.01	0.36	0.36	0.04		0.01		0.26	0.02	0.02	0.34	
Intersection Summary												
	Other											
Cycle Length: 45												
Actuated Cycle Length: 45												
Offset: 0 (0%), Referenced to	o phase 2:	NWL and	6:SETL,	Start of G	Green							
Natural Cycle: 45												
Control Type: Pretimed												
Maximum v/c Ratio: 0.36												
Intersection Signal Delay: 8.4					tersectior							
Intersection Capacity Utilizat	ion 46.1%			IC	U Level	of Service	A					
Analysis Period (min) 15												
m Volume for 95th percent	ile queue i	s metered	l by upstr	eam sign	al.							
Splits and Phases: 17:												
					-							
Ø2 (R)						Ø4						

🔎 🖉 (R)	A Ø4
22.5 s	22.5 s
X Ø6 (R)	× 08
22.5 s	22.5 s

	-	\mathbf{r}	-	+	-	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	A			<u></u>		1
Traffic Volume (vph)	40	20	0	359	47	35
Future Volume (vph)	40	20	0	359	47	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	1.00	0.95	1.00	1.00
Frt	0.949					0.865
Flt Protected					0.950	
Satd. Flow (prot)	3359	0	0	3539	0	1611
Flt Permitted					0.950	
Satd. Flow (perm)	3359	0	0	3539	0	1611
Link Speed (mph)	35			35	35	
Link Distance (ft)	404			491	211	
Travel Time (s)	7.9			9.6	4.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	43	22	0	390	51	38
Shared Lane Traffic (%)						
Lane Group Flow (vph)	65	0	0	390	51	38
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Right
Median Width(ft)	12			24	0	
Link Offset(ft)	0			6	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15		15	9
Sign Control	Free			Free	Stop	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utiliza	tion Err%			IC	CU Level	of Service
Analysis Dariad (min) 1E						

Lanes, Volumes, Timings 25: Rolling Road


	×	*	Ľ	>	2	3	*	/	6	*	*	
Lane Group	WBL	WBR	SEL2	SEL	SER	NEL	NET	NER	SWL	SWT	SWR	
Lane Configurations				ă.	1	۲	† †	1		† †	1	
Traffic Volume (vph)	0	0	12	33	42	77	342	118	0	743	87	
Future Volume (vph)	0	0	12	33	42	77	342	118	0	743	87	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	0	0		0	0	250		0	0		0	
Storage Lanes	0	0		1	1	1		1	0		1	
Taper Length (ft)	100			100		100			100			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Frt					0.850			0.850			0.850	
Flt Protected				0.950		0.950						
Satd. Flow (prot)	0	0	0	1770	1583	1770	3539	1583	0	3539	1583	
Flt Permitted				0.950		0.222						
Satd. Flow (perm)	0	0	0	1770	1583	414	3539	1583	0	3539	1583	
Right Turn on Red					Yes			Yes			Yes	
Satd. Flow (RTOR)					46			128			95	
Link Speed (mph)	35			35			35			35		
Link Distance (ft)	601			719			925			301		
Travel Time (s)	11.7			14.0			18.0			5.9		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	0	0	13	36	46	84	372	128	0	808	95	
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	49	46	84	372	128	0	808	95	
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right	
Median Width(ft)	0	5		12	5		12	5		12	5	
Link Offset(ft)	0			0			0			0		
Crosswalk Width(ft)	10			10			10			10		
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)	15	9	15	15	9	15		9	15		9	
Turn Type			D.Pm	Prot	Perm	Perm	NA	Perm		NA	Perm	
Protected Phases				8!			4			8!		
Permitted Phases			8!		8	4		4			8	
Minimum Split (s)			22.5	22.5	22.5	22.5	22.5	22.5		22.5	22.5	
Total Split (s)			22.5	22.5	22.5	22.5	22.5	22.5		22.5	22.5	
Total Split (%)			50.0%	50.0%	50.0%	50.0%	50.0%	50.0%		50.0%	50.0%	
Maximum Green (s)			18.0	18.0	18.0	18.0	18.0	18.0		18.0	18.0	
Yellow Time (s)			3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)			1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)				0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)				4.5	4.5	4.5	4.5	4.5		4.5	4.5	
Lead/Lag												
Lead-Lag Optimize?												
Walk Time (s)			7.0	7.0	7.0	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)			11.0	11.0	11.0	11.0	11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)			5	5	5	5	5	5		5	5	
Act Effct Green (s)				18.0	18.0	18.0	18.0	18.0		18.0	18.0	
Actuated g/C Ratio				0.40	0.40	0.40	0.40	0.40		0.40	0.40	
v/c Ratio				0.07	0.07	0.51	0.26	0.18		0.57	0.14	

04 Alt 01 PM Existing Adjusted adjusted; assume 60% reporting 2:43 pm 04/21/2021 1

Synchro 11 Report Page 6

Lanes, Volumes, Timings 25: Rolling Road

	*	*	4	\searrow	2	3	×	/*	6	*	*	
Lane Group	WBL	WBR	SEL2	SEL	SER	NEL	NET	NER	SWL	SWT	SWR	
Control Delay				8.7	3.8	25.2	9.7	3.1		9.6	2.7	
Queue Delay				0.0	0.0	0.0	0.0	0.0		0.1	0.0	
Total Delay				8.7	3.8	25.2	9.7	3.1		9.6	2.7	
LOS				А	А	С	А	А		А	А	
Approach Delay				6.3			10.5			8.9		
Approach LOS				А			В			А		
Queue Length 50th (ft)				7	0	15	32	0		49	0	
Queue Length 95th (ft)				22	13	#65	54	22		98	17	
Internal Link Dist (ft)	521			639			845			221		
Turn Bay Length (ft)						250						
Base Capacity (vph)				708	660	165	1415	710		1415	690	
Starvation Cap Reductn				0	0	0	0	0		54	0	
Spillback Cap Reductn				0	0	0	0	0		0	0	
Storage Cap Reductn				0	0	0	0	0		0	0	
Reduced v/c Ratio				0.07	0.07	0.51	0.26	0.18		0.59	0.14	
Intersection Summary												
51	Other											
Cycle Length: 45												
Actuated Cycle Length: 45												
Offset: 0 (0%), Referenced to	o phase 2:	and 6:, S	start of Gr	een								
Natural Cycle: 45												
Control Type: Pretimed												
Maximum v/c Ratio: 0.57	۲ ۲			اسا								
ntersection Signal Delay: 9.3					ersection		٨					
ntersection Capacity Utilizat	1011 40.2%			IC.	U Level c	I Service	A					
Analysis Period (min) 15	veoode ee	nacity au		ho longer								
95th percentile volume ex Queue shown is maximur			leue may	be lunger	•							
Phase conflict between la												
Filase connict between la	ne groups	•										
Splits and Phases: 25:												

	≯	\mathbf{i}	1	†	Ļ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	<u> </u>	7			<u></u>	
Traffic Volume (vph)	0	0	0	31	633	0
Future Volume (vph)	0	0	0	31	633	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	001900	250	1700	1700	150
	1	1	250			150
Storage Lanes	100	I	25			I
Taper Length (ft)		1.00		0.05	0.05	1.00
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	1.00
Frt Elt Drotostad						
Flt Protected	10/0	10/0	10/0	2520	25.20	10/0
Satd. Flow (prot)	1863	1863	1863	3539	3539	1863
Flt Permitted	40/0	46/2	4676	0500	0500	40/0
Satd. Flow (perm)	1863	1863	1863	3539	3539	1863
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)						
Link Speed (mph)	35			35	35	
Link Distance (ft)	755			451	920	
Travel Time (s)	14.7			8.8	17.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	34	688	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	0	0	34	688	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12	rught	Lon	24	6	rugni
Link Offset(ft)	0			-6	6	
Crosswalk Width(ft)	10			-0	10	
	10			10	10	
Two way Left Turn Lane	1 00	1 00	1.00	1 00	1 00	1.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15		0	9
Number of Detectors	1	1	1	2	2	1
Detector Template	Left	Right	Left	Thru	Thru	Right
Leading Detector (ft)	20	20	20	100	100	20
Trailing Detector (ft)	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0
Detector 1 Size(ft)	20	20	20	6	6	20
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)	0.0	0.0	0.0	94	94	0.0
Detector 2 Size(ft)				6	6	
Detector 2 Type				CI+Ex	CI+Ex	
Detector 2 Channel				CITLA	OITLA	
				0.0	0.0	
Detector 2 Extend (s)	Drot	Dorm	Dorm	0.0	0.0	Dorm
Turn Type	Prot	Perm	Perm	NA	NA	Perm
Protected Phases	4		-	2	6	
Permitted Phases		4	2			6

04 Alt 01 PM Existing Adjusted adjusted; assume 60% reporting 2:43 pm 04/21/2021 1

Synchro 11 Report Page 8

	۶	\mathbf{i}	1	1	Ļ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Detector Phase	4	4	2	2	6	6
Switch Phase	r	· · · ·	2	2	0	
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5
Total Split (s)	22.5	22.5	22.5	22.5	22.5	22.5
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%
Maximum Green (s)	18.0	18.0	18.0	18.0	18.0	18.0
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	C-Max	C-Max	C-Max	C-Max
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	5	5	5	5	5	5
Act Effct Green (s)	3			39.6	39.6	3
Actuated g/C Ratio				0.88	0.88	
v/c Ratio				0.01	0.22	
Control Delay				4.1	3.4	
Queue Delay				0.0	0.0	
Total Delay				4.1	3.4	
LOS				A	A	
Approach Delay				4.1	3.4	
Approach LOS				A	A	
Queue Length 50th (ft)				0	0	
Queue Length 95th (ft)				8	102	
Internal Link Dist (ft)	675			371	840	
Turn Bay Length (ft)	570			571	010	
Base Capacity (vph)				3114	3114	
Starvation Cap Reductn				0	0	
Spillback Cap Reductn				0	0	
Storage Cap Reductn				0	0	
Reduced v/c Ratio				0.01	0.22	
				0.01	0.22	
Intersection Summary						
Area Type:	Other					
Cycle Length: 45						
Actuated Cycle Length: 45						
Offset: 0 (0%), Referenced	d to phase 2:	NBTL ar	nd 6:SBT,	Start of C	Green	
Natural Cycle: 45						
Control Type: Actuated-Co	pordinated					
Maximum v/c Ratio: 0.22						
Intersection Signal Delay:					ntersectio	
Intersection Capacity Utiliz	zation 21.2%			[(CU Level	of Service
Analysis Period (min) 15						

	4	¥	•	×	*	ŧ⁄.
Lane Group	SBL	SBR	NEL	NET	SWT	SWR
Lane Configurations		77	٦	÷.		
Traffic Volume (vph)	0	633	31	0	0	0
Future Volume (vph)	0	633	31	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	0.88	0.95	0.95	1.00	1.00
Frt		0.850				
Flt Protected			0.950	0.950		
Satd. Flow (prot)	0	2787	1681	1681	0	0
Flt Permitted			0.950	0.950		
Satd. Flow (perm)	0	2787	1681	1681	0	0
Link Speed (mph)	35			35	35	
Link Distance (ft)	227			920	549	
Travel Time (s)	4.4			17.9	10.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	688	34	0	0	0
Shared Lane Traffic (%)			50%			
Lane Group Flow (vph)	0	688	17	17	0	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			36	36	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15			9
Sign Control	Free			Free	Free	
Intersection Summary						
Area Type: (Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 25.5%			IC	U Level o	of Service A
Analysis Period (min) 15						

Lanes, Volumes, Timings 34: VA 286 SB Loop

	_#	7	•	×	×	~
Lane Group	EBL	EBR	NEL	NET	SWT	SWR
Lane Configurations				<u></u>	<u></u>	1
Traffic Volume (vph)	0	0	0	361	450	133
Future Volume (vph)	0	0	0	361	450	133
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	1.00
Frt						0.850
Flt Protected						
Satd. Flow (prot)	0	0	0	3539	3539	1583
Flt Permitted						
Satd. Flow (perm)	0	0	0	3539	3539	1583
Link Speed (mph)	35			35	35	
Link Distance (ft)	818			374	654	
Travel Time (s)	15.9			7.3	12.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	392	489	145
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	0	0	392	489	145
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12	Ŭ		12	12	Ŭ
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15			9
Sign Control	Stop			Free	Free	
Intersection Summary						
	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 15.8%			IC		of Service
Analysis Doriod (min) 15	101113.070				O LEVEL	JI SEIVICE

Lanes, Volumes, Timings 36: VA 286 NB Loop

	*	۲	×	/	6	*	
Lane Group	WBL	WBR	NET	NER	SWL	SWT	
Lane Configurations			† †	1		^	
Traffic Volume (vph)	0	0	27	355	0	581	
Future Volume (vph)	0	0	27	355	0	581	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	0.95	1.00	1.00	0.91	
Frt				0.850			
Flt Protected							
Satd. Flow (prot)	0	0	3539	1583	0	5085	
Flt Permitted							
Satd. Flow (perm)	0	0	3539	1583	0	5085	
Link Speed (mph)	35		35			35	
Link Distance (ft)	815		654			397	
Travel Time (s)	15.9		12.7			7.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	0	0	29	386	0	632	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	0	0	29	386	0	632	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Left	
Median Width(ft)	0		12			12	
Link Offset(ft)	0		0			0	
Crosswalk Width(ft)	10		10			10	
Two way Left Turn Lane							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)	15	9		9	15		
Sign Control	Stop		Free			Free	
Intersection Summary							
51)ther						
Control Type: Unsignalized							
Intersection Capacity Utilizati	on 31.5%			IC	U Level o	of Service	e A

Lanes, Volumes, Timings 101: VA 286 NB Directional Ramp

		7	3	×	*	~	
Lane Group	EBL	EBR	NEL	NET	SWT	SWR	
Lane Configurations				† †	^	1	
Traffic Volume (vph)	0	0	0	31	233	400	
Future Volume (vph)	0	0	0	31	233	400	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	0.95	0.91	1.00	
Frt						0.850	
Flt Protected							
Satd. Flow (prot)	0	0	0	3539	5085	1583	
Flt Permitted							
Satd. Flow (perm)	0	0	0	3539	5085	1583	
Link Speed (mph)	35			35	35		
Link Distance (ft)	1042			221	359		
Travel Time (s)	20.3			4.3	7.0		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	0	0	0	34	253	435	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	0	0	0	34	253	435	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(ft)	8			0	6		
Link Offset(ft)	0			0	0		
Crosswalk Width(ft)	10			10	10		
Two way Left Turn Lane							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)	15	9	15			9	
Sign Control	Free			Free	Free		
Intersection Summary							
Area Type: (Other						
Control Type: Unsignalized							
Intersection Capacity Utilizat	ion 28.1%			IC	CU Level	of Service	e A
Analysis Poriod (min) 15							

	ų.	ų	-	*	+	~
Lane Group	SBL	SBR	NWL	NWR	NEL	NER
Lane Configurations	`	17	7	1	ካካ 20	1
Traffic Volume (vph)	0	633	0	1	30	1
Future Volume (vph)	0	633	0	1	30	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	0	500	0	0
Storage Lanes	1	2	1	1	2	1
Taper Length (ft)	25		25		25	
Lane Util. Factor	1.00	0.88	1.00	1.00	0.97	1.00
Frt		0.850		0.850		0.850
Flt Protected					0.950	
Satd. Flow (prot)	1863	2787	1863	1583	3433	1583
Flt Permitted					0.950	
Satd. Flow (perm)	1863	2787	1863	1583	3433	1583
Right Turn on Red		Yes		Yes		Yes
Satd. Flow (RTOR)		1920		1007		1
Link Speed (mph)	35		35		35	
Link Distance (ft)	570		723		430	
Travel Time (s)	11.1		14.1		8.4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.4	0.92
Adj. Flow (vph)	0.92	688	0.92	0.92	33	0.92
, , ,	U	ŬŐŎ	0	1	33	I
Shared Lane Traffic (%)	0	(00	0	1	22	1
Lane Group Flow (vph)	0	688	0	1	33	1
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Right
Median Width(ft)	30		32		32	
Link Offset(ft)	30		0		0	
Crosswalk Width(ft)	10		10		10	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15	9	15	9
Number of Detectors	0	0	0	0	0	0
Detector Template	Thru	Thru	Thru	Thru	Thru	Thru
Leading Detector (ft)	0	0	0	0	0	0
Trailing Detector (ft)	0	0	0	0	0	0
Turn Type	Prot	pt+ov	Prot	Perm	Prot	Perm
Protected Phases	5	ρι+0v 5 6	4	I CIIII	6	гепп
Permitted Phases	0	50	4	1	0	6
		Г /	4	4	1	6
Detector Phase	5	56	4	4	6	6
Switch Phase	= -		= -			
Minimum Initial (s)	5.0		5.0	5.0	5.0	5.0
Minimum Split (s)	22.5		22.5	22.5	22.5	22.5
Total Split (s)	15.5		15.5	15.5	19.0	19.0
Total Split (%)	31.0%		31.0%	31.0%	38.0%	38.0%
Maximum Green (s)	11.0		11.0	11.0	14.5	14.5
Yellow Time (s)	3.5		3.5	3.5	3.5	3.5
All-Red Time (s)	1.0		1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5		4.5	4.5	4.5	4.5
Lead/Lag	Lead		1.0	1.0	Lag	Lag
	LEau				Lay	Lay

	L.	¥		*	*	4
Lane Group	SBL	SBR	NWL	NWR	NEL	NER
Lead-Lag Optimize?	Yes				Yes	Yes
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Recall Mode	None		None	None	C-Max	C-Max
Walk Time (s)	7.0		7.0	7.0	7.0	7.0
Flash Dont Walk (s)	11.0		11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	0		0	0	0	0
Act Effct Green (s)		47.1		5.5	33.3	33.3
Actuated g/C Ratio		0.94		0.11	0.67	0.67
v/c Ratio		0.25		0.00	0.01	0.00
Control Delay		0.2		0.0	4.4	4.0
Queue Delay		0.0		0.0	0.0	0.0
Total Delay		0.2		0.0	4.4	4.0
LOS		А		А	А	А
Approach Delay	0.2				4.4	
Approach LOS	А				А	
Queue Length 50th (ft)		0		0	1	0
Queue Length 95th (ft)		0		0	7	2
Internal Link Dist (ft)	490		643		350	
Turn Bay Length (ft)				500		
Base Capacity (vph)		2737		1133	2286	1054
Starvation Cap Reductn		0		0	0	0
Spillback Cap Reductn		0		0	0	0
Storage Cap Reductn		0		0	0	0
Reduced v/c Ratio		0.25		0.00	0.01	0.00
Intersection Summary						
Area Type:	Other					
Cycle Length: 50						
Actuated Cycle Length: 50)					
Offset: 0 (0%), Referenced		VEL, Star	t of Gree	n		
Natural Cycle: 70		,				
Control Type: Actuated-Co	oordinated					
Maximum v/c Ratio: 0.25						
Intersection Signal Delay:	0.4			I	ntersectio	n LOS: A
Intersection Capacity Utiliz						of Service
Analysis Period (min) 15						

Splits and Phases: 102:

A Ø5	• 🐙 ø6 (R)	▶ Ø4	
15.5 s	19 s	15.5 s	

Lanes, Volumes, Timings 103: Parking Garage Exit

	-	\mathbf{i}	4	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations		LDI		***	זא	
Traffic Volume (vph)	↑↑ 31	0	0	TT 406	11 227	r 29
Future Volume (vph)	31	0	0	406	227	29
Ideal Flow (vphpl)	31 1900	1900	1900	406	1900	29 1900
Lane Util. Factor	0.95	1.00	1.00	0.95		1.00
	0.95	1.00	1.00	0.95	0.97	
Frt Elt Drotostad						0.850
Flt Protected	2520	0	0	2520	0.950	1000
Satd. Flow (prot)	3539	0	0	3539	3433	1583
Flt Permitted	0500	0	0	0500	0.950	1500
Satd. Flow (perm)	3539	0	0	3539	3433	1583
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)						32
Link Speed (mph)	35			35	35	
Link Distance (ft)	923			533	500	
Travel Time (s)	18.0			10.4	9.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	34	0	0	441	247	32
Shared Lane Traffic (%)						
Lane Group Flow (vph)	34	0	0	441	247	32
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12	i vigin	Lon	12	24	ragin
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane	10			10	10	
	1.00	1.00	1.00	1.00	1.00	1.00
Headway Factor	1.00		1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15	-	15	9
Number of Detectors	2			2	1	1
Detector Template	Thru			Thru	Left	Right
Leading Detector (ft)	100			100	20	20
Trailing Detector (ft)	0			0	0	0
Detector 1 Position(ft)	0			0	0	0
Detector 1 Size(ft)	6			6	20	20
Detector 1 Type	CI+Ex			CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0			0.0	0.0	0.0
Detector 1 Queue (s)	0.0			0.0	0.0	0.0
Detector 1 Delay (s)	0.0			0.0	0.0	0.0
Detector 2 Position(ft)	94			94	0.0	0.0
Detector 2 Size(ft)	6			6		
Detector 2 Type	CI+Ex			CI+Ex		
51	UI+EX			UI+EX		
Detector 2 Channel	0.0			0.0		
Detector 2 Extend (s)	0.0			0.0	Durt	Demo
Turn Type	NA			NA	Prot	Perm
Protected Phases	6			2	4	
Permitted Phases						4
Detector Phase	6			2	4	4
Switch Phase						
Minimum Initial (s)	5.0			5.0	5.0	5.0

Lanes, Volumes, Timings 103: Heller Road - Inspection Entrance

	-	\mathbf{r}	-	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Minimum Split (s)	22.5			22.5	22.5	22.5
Total Split (s)	26.0			26.0	24.0	24.0
Total Split (%)	52.0%			52.0%	48.0%	48.0%
Maximum Green (s)	21.5			21.5	19.5	19.5
Yellow Time (s)	3.5			3.5	3.5	3.5
All-Red Time (s)	1.0			1.0	1.0	1.0
Lost Time Adjust (s)	0.0			0.0	0.0	0.0
Total Lost Time (s)	4.5			4.5	4.5	4.5
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0			3.0	3.0	3.0
Recall Mode	C-Max			C-Max	None	None
Walk Time (s)	7.0			7.0	7.0	7.0
Flash Dont Walk (s)	11.0			11.0	11.0	11.0
Pedestrian Calls (#/hr)	0			0	0	0
Act Effct Green (s)	32.1			32.1	8.9	8.9
Actuated g/C Ratio	0.64			0.64	0.18	0.18
v/c Ratio	0.01			0.19	0.40	0.10
Control Delay	3.8			4.2	19.8	7.9
Queue Delay	0.0			0.0	0.0	0.0
Total Delay	3.8			4.2	19.8	7.9
LOS	A			А	В	А
Approach Delay	3.8			4.2	18.4	
Approach LOS	A			А	В	
Queue Length 50th (ft)	1			22	33	0
Queue Length 95th (ft)	5			42	55	16
Internal Link Dist (ft)	843			453	420	
Turn Bay Length (ft)						
Base Capacity (vph)	2272			2272	1338	636
Starvation Cap Reductn	0			0	0	0
Spillback Cap Reductn	0			0	0	0
Storage Cap Reductn	0			0	0	0
Reduced v/c Ratio	0.01			0.19	0.18	0.05
	0.01			0.1.7	0.110	0.00
Intersection Summary	0.1					
Area Type:	Other					
Cycle Length: 50						
Actuated Cycle Length: 50						
Offset: 0 (0%), Reference	d to phase 2:	NBT and	6:EBT, S	Start of G	reen	
Natural Cycle: 45						

Natural Cycle: 45 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.40 Intersection Signal Delay: 9.5 Intersection Capacity Utilization 25.2% Analysis Period (min) 15 Intersection LOS: A ICU Level of Service A

Splits and Phases: 103:

← Ø2 (R)	▲ ¥Ø4
26 s	24 s
26 s	
26 s	

Lanes, Volumes, Timings 104: Visitor Entrance

	-	\mathbf{i}	4	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	101 101	LDIX		***		
Traffic Volume (vph)	T P 60	0	0	4 06	0	20
Future Volume (vph)	60	0	0	400	0	20
Ideal Flow (vphpl)	1900	1900	1900	406	1900	1900
Lane Util. Factor	0.95	0.95	1,00	0.95	1,00	1.00
Frt	0.93	0.95	1.00	0.93	1.00	0.850
Fit Protected						0.000
	2520	0	1040	2520	1040	1583
Satd. Flow (prot) Flt Permitted	3539	0	1863	3539	1863	1583
	2520	0	10/0	2520	10/0	1500
Satd. Flow (perm)	3539	0	1863	3539	1863	1583
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)						887
Link Speed (mph)	35			35	35	
Link Distance (ft)	533			404	428	
Travel Time (s)	10.4			7.9	8.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	65	0	0	441	0	22
Shared Lane Traffic (%)						
Lane Group Flow (vph)	65	0	0	441	0	22
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	24	. ugu	2011	24	20	. ugut
Link Offset(ft)	-12			8	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane	10			10	10	
	1.00	1.00	1.00	1.00	1.00	1.00
Headway Factor	1.00			1.00		
Turning Speed (mph)	NLA	9	15 Derm	NIA	15 Dret	9
Turn Type	NA		Perm	NA	Prot	Perm
Protected Phases	4		0	8	2	0
Permitted Phases			8			2
Minimum Split (s)	22.5		22.5	22.5	22.5	22.5
Total Split (s)	22.5		22.5	22.5	22.5	22.5
Total Split (%)	50.0%		50.0%	50.0%	50.0%	50.0%
Maximum Green (s)	18.0		18.0	18.0	18.0	18.0
Yellow Time (s)	3.5		3.5	3.5	3.5	3.5
All-Red Time (s)	1.0		1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5		4.5	4.5	4.5	4.5
Lead/Lag	1.0		1.0	1.0	1.0	10
Lead-Lag Optimize?						
Walk Time (s)	7.0		7.0	7.0	7.0	7.0
Flash Dont Walk (s)	11.0		11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	0		0	0	0	0
Act Effct Green (s)	18.0			18.0		18.0
Actuated g/C Ratio	0.40			0.40		0.40
v/c Ratio	0.05			0.31		0.02
Control Delay	8.4			10.0		0.1
Queue Delay	0.0			0.0		0.0
Total Delay	8.4			10.0		0.1

Lanes, Volumes, Timings 104: Visitor Entrance

	-	$\mathbf{\hat{v}}$	<	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
LOS	А			В		А
Approach Delay	8.4			10.0	0.1	
Approach LOS	А			В	А	
Queue Length 50th (ft)	5			38		0
Queue Length 95th (ft)	13			64		0
Internal Link Dist (ft)	453			324	348	
Turn Bay Length (ft)						
Base Capacity (vph)	1415			1415		1165
Starvation Cap Reductn	0			0		0
Spillback Cap Reductn	0			0		0
Storage Cap Reductn	0			0		0
Reduced v/c Ratio	0.05			0.31		0.02
Intersection Summary						
Area Type:	Other					
Cycle Length: 45						
Actuated Cycle Length: 45						
Offset: 0 (0%), Referenced	to phase 2:	VBL and (6:, Start o	of Green		
Natural Cycle: 45						
Control Type: Pretimed						
Maximum v/c Ratio: 0.31						
Intersection Signal Delay: 9					tersection	
Intersection Capacity Utiliz	ation 15.8%			IC	CU Level c	of Service A
Analysis Period (min) 15						
Splits and Phases: 104:						
Spins and Fhases. 104.						

ï2 (R)	→ Ø4	
22.5 s	22.5 s	
	₩ Ø8	
	22.5 s	

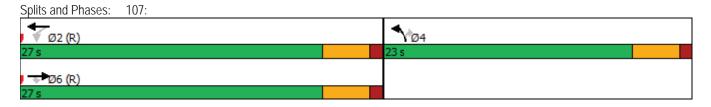
	-	\mathbf{i}	4	+	•	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations				**B1	۱۱۵L ۲۲	
Traffic Volume (vph)	TT 71	r 4	1 57	TT 92	יי יי 267	670
Future Volume (vph)	71	4	57	92	267	670
Ideal Flow (vphpl)	1900	4	1900	92 1900	1900	1900
Lane Util. Factor	0.95	1.00	1.00	0.95	0.97	0.95
Frt	0.90	0.850	1.00	0.93	0.97	0.95
Fit Protected		0.650	0.950		0.893	
	3539	1583		3539	3182	0
Satd. Flow (prot) Flt Permitted	3037	1003	1770	3037		0
	2520	1500	0.950	2520	0.986	0
Satd. Flow (perm)	3539	1583	1770	3539	3182	0
Right Turn on Red		Yes			700	Yes
Satd. Flow (RTOR)	05	4		05	728	
Link Speed (mph)	35			35	35	
Link Distance (ft)	491			971	1149	
Travel Time (s)	9.6			18.9	22.4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	77	4	62	100	290	728
Shared Lane Traffic (%)						
Lane Group Flow (vph)	77	4	62	100	1018	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	24			24	24	<u> </u>
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane	10			10	10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	9	1.00	1.00	1.00	9
Number of Detectors	2	1	1	2	1	/
Detector Template	∠ Thru		Left	Z Thru	Left	
	100	Right	20	100	20	
Leading Detector (ft)		20				
Trailing Detector (ft)	0	0	0	0	0	
Detector 1 Position(ft)	0	0	0	0	0	
Detector 1 Size(ft)	6	20	20	6	20	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(ft)	94			94		
Detector 2 Size(ft)	6			6		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA	Perm	Prot	NA	Prot	
Protected Phases	6		5	2	4	
Permitted Phases	3	6	<u> </u>	_		
Detector Phase	6	6	5	2	4	
Switch Phase	0	U	0	2	т	
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	
	0.0	5.0	5.0	5.0	5.0	

04/10/2022)
------------	---

	-	\mathbf{r}	4	+	-	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Minimum Split (s)	20.0	20.0	9.5	22.5	15.0	HER.
Total Split (s)	21.0	21.0	10.0	31.0	19.0	
Total Split (%)	42.0%	42.0%	20.0%	62.0%	38.0%	
Maximum Green (s)	16.5	16.5	5.5	26.5	14.5	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	
Lead/Lag	Lag	Lag	Lead			
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	C-Max	C-Max	None	C-Max	None	
Walk Time (s)	7.0	7.0				
Flash Dont Walk (s)	11.0	11.0				
Pedestrian Calls (#/hr)	0	0				
Act Effct Green (s)	23.4	23.4	6.0	29.7	11.3	
Actuated g/C Ratio	0.47	0.47	0.12	0.59	0.23	
v/c Ratio	0.05	0.01	0.30	0.05	0.79	
Control Delay	10.9	8.2	28.4	3.8	10.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	10.9	8.2	28.4	3.8	10.0	
LOS	В	А	С	А	А	
Approach Delay	10.8			13.2	10.0	
Approach LOS	В			В	А	
Queue Length 50th (ft)	7	0	16	4	35	
Queue Length 95th (ft)	18	5	48	11	79	
Internal Link Dist (ft)	411			891	1069	
Turn Bay Length (ft)						
Base Capacity (vph)	1654	742	210	2101	1439	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.05	0.01	0.30	0.05	0.71	
Intersection Summary						
Area Type:	Other					
Cycle Length: 50						
Actuated Cycle Length: 50						
Offset: 0 (0%), Referenced	to phase 2	:WBT and	d 6:EBT, 9	Start of G	reen	
Natural Cycle: 50						
Control Type: Actuated-Coo	ordinated					
Maximum v/c Ratio: 0.79						
Intersection Signal Delay: 1					ntersectior	
Intersection Capacity Utiliza	ation 46.2%)		[(CU Level o	of Service A
Analysis Period (min) 15						

Splits and Phases: 105:

Lanes, Volumes, Timings 106: FBNA CDC Entrance


EBL 0 0 1900 1.00	EBT ** 741 741 1900	EBR 0	WBL 2	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
0 1900	741 741	-	2	^								
0 1900	741 741	-	2				•			†		
1900		0		119	2	27	0	17	0	0	4	
	1000	0	2	119	2	27	0	17	0	0	4	
1.00	1700	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
	0.95	1.00	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00	
				0.998			0.948			0.865		
				0.999			0.970					
0	3539	0	0	3529	0	0	1713	0	0	1611	0	
				0.999			0.970					
0	3539	0	0	3529	0	0	1713	0	0	1611	0	
	35			35			35			35		
	971			260			262			305		
	18.9			5.1			5.1			5.9		
0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
0	805	0	2	129	2	29	0	18	0	0	4	
0	805	0	0	133	0	0	47	0	0	4	0	
No	No	No	No	No	No	No	No	No	No	No	No	
Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right	
	16			16			0			0		
	0			0			0			0		
	10			10			10			10		
1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
15		9	15		9	15		9	15		9	
	Free			Free			Stop			Stop		
er												
36.4%			IC	CU Level of	of Service	А						
	1.00 0 0.92 0 0 0 No Left 1.00 15	1900 1900 1.00 0.95 0 3539 0 3539 0 3539 0 3539 0 3539 0 3539 0 3539 0 3539 0 3539 0 971 18.9 0.92 0 805 No No Left Left 16 0 1.00 1.00 15 Free	1900 1900 1900 1.00 0.95 1.00 0 3539 0 0 3539 0 0 3539 0 0 3539 0 0 3539 0 0 3539 0 0 3539 0 0 355 0 0 805 0 0 805 0 0 805 0 0 805 0 0 805 0 10 16 0 100 1.00 1.00 15 9 Free	1900 1900 1900 1900 1.00 0.95 1.00 0.95 0 3539 0 0 0 3539 0 0 0 3539 0 0 0 3539 0 0 0 3539 0 0 0 3539 0 0 0 3539 0 0 0 905 0 2 0 805 0 2 0 805 0 0 No No No No Left Left Right Left 1.00 1.00 1.00 1.00 15 9 15 Free	1900 1900 1900 1900 1900 1.00 0.95 1.00 0.95 0.95 0.998 0.999 0 3529 0.999 0 3539 0 0 3529 0 3539 0 0 3529 0 3539 0 0 3529 0 3535 35 35 971 260 18.9 5.1 0.92 0.92 0.92 0.92 0.92 0 805 0 2 129 0 805 0 0 133 No No No No No 1.00 1.00 1.00 10 10 1.00 1.00 1.00 1.00 1.00 15 9 15 Free Free	1900 1900 1900 1900 1900 1900 1.00 0.95 1.00 0.95 0.95 0.975 0.998 0.999 0 3529 0 0 3539 0 0 3529 0 0 3539 0 0 3529 0 0 3539 0 0 3529 0 0 3539 0 0 3529 0 0 3539 0 0 3529 0 35 35 35 35 971 260 18.9 5.1 0 0 92 0.92 0.92 0.92 0 805 0 2 129 2 2 2 2 0 805 0 0 133 0 No No No No No No No No No No 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <tr< td=""><td>1900 1900 1900 1900 1900 1900 1900 1.00 0.95 1.00 0.95 0.95 0.95 1.00 0.998 0.999 0 3529 0 0 0 0 3539 0 0 3529 0 0 0 3539 0 0 3529 0 0 35 35 35 35 35 35 971 260 18.9 5.1 0.92 0.92 0.92 0.92 0 805 0 2 129 2 29 29 0 805 0 0 133 0 0 No No No No No No No Left Left Right Left Left Right Left 1.00 1.00 1.00 1.00 1.00 1.00 1.00 15 9 15 9 15 9 15 <td colsystyle<="" td=""><td>1900 1900 1900 1900 1900 1900 1900 1900 1.00 0.95 1.00 0.95 0.95 0.95 1.00 1.00 0.998 0.998 0.998 0.970 0 3539 0 0 3529 0 0 1713 0.999 0.970 0 3539 0 0 3529 0 0 1713 0.999 0.970 0 3539 0 0 3529 0 0 1713 35 35 35 35 35 35 35 971 260 262 18.9 5.1 5.1 5.1 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 <td< td=""><td>1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1000 1.00 0.09 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.940 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.972 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.9</td><td>1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00</td><td>1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00</td></td<></td></td></td></tr<>	1900 1900 1900 1900 1900 1900 1900 1.00 0.95 1.00 0.95 0.95 0.95 1.00 0.998 0.999 0 3529 0 0 0 0 3539 0 0 3529 0 0 0 3539 0 0 3529 0 0 35 35 35 35 35 35 971 260 18.9 5.1 0.92 0.92 0.92 0.92 0 805 0 2 129 2 29 29 0 805 0 0 133 0 0 No No No No No No No Left Left Right Left Left Right Left 1.00 1.00 1.00 1.00 1.00 1.00 1.00 15 9 15 9 15 9 15 <td colsystyle<="" td=""><td>1900 1900 1900 1900 1900 1900 1900 1900 1.00 0.95 1.00 0.95 0.95 0.95 1.00 1.00 0.998 0.998 0.998 0.970 0 3539 0 0 3529 0 0 1713 0.999 0.970 0 3539 0 0 3529 0 0 1713 0.999 0.970 0 3539 0 0 3529 0 0 1713 35 35 35 35 35 35 35 971 260 262 18.9 5.1 5.1 5.1 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 <td< td=""><td>1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1000 1.00 0.09 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.940 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.972 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.9</td><td>1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00</td><td>1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00</td></td<></td></td>	<td>1900 1900 1900 1900 1900 1900 1900 1900 1.00 0.95 1.00 0.95 0.95 0.95 1.00 1.00 0.998 0.998 0.998 0.970 0 3539 0 0 3529 0 0 1713 0.999 0.970 0 3539 0 0 3529 0 0 1713 0.999 0.970 0 3539 0 0 3529 0 0 1713 35 35 35 35 35 35 35 971 260 262 18.9 5.1 5.1 5.1 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 <td< td=""><td>1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1000 1.00 0.09 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.940 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.972 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.9</td><td>1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00</td><td>1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00</td></td<></td>	1900 1900 1900 1900 1900 1900 1900 1900 1.00 0.95 1.00 0.95 0.95 0.95 1.00 1.00 0.998 0.998 0.998 0.970 0 3539 0 0 3529 0 0 1713 0.999 0.970 0 3539 0 0 3529 0 0 1713 0.999 0.970 0 3539 0 0 3529 0 0 1713 35 35 35 35 35 35 35 971 260 262 18.9 5.1 5.1 5.1 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 <td< td=""><td>1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1000 1.00 0.09 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.940 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.972 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.9</td><td>1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00</td><td>1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00</td></td<>	1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1000 1.00 0.09 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.940 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.972 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.9	1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

	-	\mathbf{r}	4	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u></u>			 ↑Ъ		
Traffic Volume (vph)	465	293	4	N T 122	0	19
Future Volume (vph)	405	293	4	122	0	19
Ideal Flow (vphpl)	405 1900	1900	4	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	1.00	0.95	0.95	1.00	1.00
Frt Elle Drocke este el		0.850		0.000		0.850
Flt Protected	2520	1/00	0	0.999	10/0	1500
Satd. Flow (prot)	3539	1689	0	3536	1863	1583
Flt Permitted		1/00		0.947		
Satd. Flow (perm)	3539	1689	0	3352	1863	1583
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		318				253
Link Speed (mph)	35			35	35	
Link Distance (ft)	777			738	307	
Travel Time (s)	15.1			14.4	6.0	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	505	318	4	133	0	21
Shared Lane Traffic (%)						
Lane Group Flow (vph)	505	318	0	137	0	21
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	R NA	Left	Left	Left	Right
Median Width(ft)	16		LUIT	16	36	Right
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	10			10	10	
.,	IU			10	IU	
Two way Left Turn Lane	1 00	0.00	1.00	1.00	1.00	1.00
Headway Factor	1.00	0.92	1.00	1.00	1.00	1.00
Turning Speed (mph)		15	15	^	15	9
Number of Detectors	2	1	1	2	1	1
Detector Template	Thru	Right	Left	Thru	Left	Right
Leading Detector (ft)	100	20	20	100	20	20
Trailing Detector (ft)	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0
Detector 1 Size(ft)	6	20	20	6	20	20
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)	94	0.0	0.0	94	0.0	0.0
Detector 2 Size(ft)	6			94 6		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel	0.0			0.0		
Detector 2 Extend (s)	0.0			0.0	D :	5
Turn Type	NA	Perm	Perm	NA	Prot	Perm
Protected Phases	6			2	4	
Permitted Phases		6	2			4
Detector Phase	6	6	2	2	4	4
Switch Phase						

Lanes, Volumes, Timings 107: Heller Road

	-	\mathbf{i}	4	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5
Total Split (s)	27.0	27.0	27.0	27.0	23.0	23.0
Total Split (%)	54.0%	54.0%	54.0%	54.0%	46.0%	46.0%
Maximum Green (s)	22.5	22.5	22.5	22.5	18.5	18.5
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	1.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5		4.5	4.5	4.5
Lead/Lag	т.Ј	т.5		т.Ј	т.Ј	т.5
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	C-Max	C-Max	C-Max	C-Max	None	None
Walk Time (s)	C-IVIAX 7.0	C-IVIAX 7.0	C-IVIAX 7.0	C-IVIAX 7.0	7.0	7.0
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	0	0	0	0	0	0
Act Effct Green (s)	47.1	47.1		47.1		5.5
Actuated g/C Ratio	0.94	0.94		0.94		0.11
v/c Ratio	0.15	0.20		0.04		0.05
Control Delay	0.5	0.2		0.7		0.3
Queue Delay	0.0	0.0		0.0		0.0
Total Delay	0.5	0.2		0.7		0.3
LOS	А	А		А		А
Approach Delay	0.4			0.7	0.3	
Approach LOS	А			А	А	
Queue Length 50th (ft)	0	0		0		0
Queue Length 95th (ft)	m14	m0		7		0
Internal Link Dist (ft)	697			658	227	
Turn Bay Length (ft)						
Base Capacity (vph)	3334	1609		3157		745
Starvation Cap Reductn	0	0		0		0
Spillback Cap Reductn	0	0		0		0
Storage Cap Reductn	0	0		0		0
Reduced v/c Ratio	0.15	0.20		0.04		0.03
Intersection Summary	0.11					
Area Type:	Other					
Cycle Length: 50						
Actuated Cycle Length: 50						
Offset: 0 (0%), Referenced	d to phase 2	:WBTL ar	nd 6:EBT,	, Start of (Green	
Natural Cycle: 45						
Control Type: Actuated-Co	oordinated					
Maximum v/c Ratio: 0.20						
Intersection Signal Delay:				Ir	ntersectio	n LOS: A
Intersection Capacity Utiliz	zation 29.8%)		[(CU Level	of Service
Analysis Period (min) 15						
m Volume for 95th perce	entile queue	is metere	ed by upst	ream sig	nal.	
	1		J . I	- 9		

Lanes, Volumes, Timings 107: Heller Road

	≯	\mathbf{i}	1	†	Ļ	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	٦Y	LDR	<u>الالال</u>		^	1
Traffic Volume (vph)	470	115	40	1170	922	85
Future Volume (vph)	470	115	40	1170	922	85
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.97	0.95	1,00	0.95	0.95	1.00
Frt	0.97	0.93	1.00	0.95	0.95	0.850
Fit Protected	0.971		0.950			0.000
Satd. Flow (prot)	3372	0	1770	3539	3539	1583
Flt Permitted	0.961	0	0.200	2024	2024	1000
		0		2520	2520	1500
Satd. Flow (perm)	3372	0	373	3539	3539	1583 Voc
Right Turn on Red	17	Yes				Yes
Satd. Flow (RTOR)	67			05	05	92
Link Speed (mph)	35			35	35	
Link Distance (ft)	738			727	965	
Travel Time (s)	14.4			14.2	18.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	511	125	43	1272	1002	92
Shared Lane Traffic (%)						
Lane Group Flow (vph)	636	0	43	1272	1002	92
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	36	J		12	12	J
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane	10			10	10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	9	1.00	1.00	1.00	9
Turn Type	Prot	7	pm+pt	NA	NA	Perm
Protected Phases			· ·	NA 2		reilli
	4		5	Z	6	1
Permitted Phases	00 F		2	00 F	00 F	6 22 F
Minimum Split (s)	22.5		9.5	22.5	22.5	22.5
Total Split (s)	21.5		8.5	28.5	20.0	20.0
Total Split (%)	43.0%		17.0%	57.0%	40.0%	40.0%
Maximum Green (s)	17.0		4.0	24.0	15.5	15.5
Yellow Time (s)	3.5		3.5	3.5	3.5	3.5
All-Red Time (s)	1.0		1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5		4.5	4.5	4.5	4.5
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Walk Time (s)	7.0		100	7.0	7.0	7.0
Flash Dont Walk (s)	11.0			11.0	11.0	11.0
Pedestrian Calls (#/hr)	0			0	0	0
Act Effct Green (s)			24.0		15.5	15.5
	17.0			24.0		
Actuated g/C Ratio	0.34		0.48	0.48	0.31	0.31
v/c Ratio	0.53		0.15	0.75	0.91	0.17
Control Delay	10.6		8.2	14.0	32.0	4.6
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	10.6		8.2	14.0	32.0	4.6

	≯	\mathbf{Y}	1	1	۰.	1	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
LOS	В		А	В	С	А	
Approach Delay	10.6			13.8	29.7		
Approach LOS	В			В	С		
Queue Length 50th (ft)	52		6	145	145	0	
Queue Length 95th (ft)	68		18	212	#253	24	
Internal Link Dist (ft)	658			647	885		
Turn Bay Length (ft)							
Base Capacity (vph)	1190		290	1698	1097	554	
Starvation Cap Reductn	0		0	0	0	0	
Spillback Cap Reductn	0		0	0	0	0	
Storage Cap Reductn	0		0	0	0	0	
Reduced v/c Ratio	0.53		0.15	0.75	0.91	0.17	
Intersection Summary							
Area Type:	Other						
Cycle Length: 50							
Actuated Cycle Length: 50							
Offset: 0 (0%), Referenced	d to phase 2:I	VBTL and	16:SBT, S	Start of G	ireen, Mas	ster Inters	section
Natural Cycle: 60							
Control Type: Pretimed							
Maximum v/c Ratio: 0.91							
Intersection Signal Delay:					tersectior		
Intersection Capacity Utiliz	zation 57.8%			IC	CU Level o	of Service	В
Analysis Period (min) 15							
# 95th percentile volume			eue may	be longer	r.		
Queue shown is maxim	num after two	cycles.					
Splits and Phases: 108:							

		▶ 04	
28.5 s		21.5 s	
▲ Ø5	Ø6 (R)		
8.5 s	20 s		

	Ť	۴	L.	÷.	£	*	
Lane Group	NBT	NBR	SBL	SBT	NWL	NWR	
Lane Configurations	†			•			
Traffic Volume (vph)	19	0	361	0	0	0	
Future Volume (vph)	19	0	361	0	0	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt							
Flt Protected				0.950			
Satd. Flow (prot)	1863	0	0	1770	0	0	
Flt Permitted				0.950			
Satd. Flow (perm)	1863	0	0	1770	0	0	
Link Speed (mph)	35			35	35		
Link Distance (ft)	1082			1015	590		
Travel Time (s)	21.1			19.8	11.5		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	21	0	392	0	0	0	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	21	0	0	392	0	0	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(ft)	0			0	0		
Link Offset(ft)	0			0	0		
Crosswalk Width(ft)	10			10	10		
Two way Left Turn Lane							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)		9	15		15	9	
Sign Control	Free			Free	Stop		
Intersection Summary							
Area Type:	Other						
Control Type: Unsignalized							
Intersection Capacity Utiliza	ation 30.0%			IC	U Level o	of Service	А
Analysis Poriod (min) 15							

	-	\mathbf{r}	-	-	1	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	•			•	- Y		
Traffic Volume (vph)	0	0	0	0	0	19	
Future Volume (vph)	0	0	0	0	0	19	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt					0.865		
Flt Protected							
Satd. Flow (prot)	1863	0	0	1863	1611	0	
Flt Permitted							
Satd. Flow (perm)	1863	0	0	1863	1611	0	
Link Speed (mph)	35			35	35		
Link Distance (ft)	839			634	538		
Travel Time (s)	16.3			12.4	10.5		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	0	0	0	0	0	21	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	0	0	0	0	21	0	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(ft)	0			0	12		
Link Offset(ft)	0			0	0		
Crosswalk Width(ft)	10			10	10		
Two way Left Turn Lane							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)		9	15		15	9	
Sign Control	Free			Free	Stop		
Intersection Summary							
Area Type: (Other						
Control Type: Unsignalized							
Intersection Capacity Utilizat	tion 13.3%			IC	CU Level o	of Service	A
Analysis Doriod (min) 15				10	2 20.010	30.1.30	

Lanes, Volumes, Timings 111: South Gate

	≯	+	+	*	1	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्स	4Î		٦	1
Traffic Volume (vph)	0	0	0	0	0	0
Future Volume (vph)	0	0	0	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt						
Flt Protected						
Satd. Flow (prot)	0	1863	1863	0	1863	1863
Flt Permitted						
Satd. Flow (perm)	0	1863	1863	0	1863	1863
Link Speed (mph)		35	35		35	
Link Distance (ft)		98	839		286	
Travel Time (s)		1.9	16.3		5.6	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	0	0	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	0	0	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		0	0		36	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		10	10		10	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15			9	15	9
Sign Control		Free	Stop		Stop	
Intersection Summary						
51	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	ion 13.3%			IC	U Level o	of Service

AM Build LOS

	*	۲	*	4	4	*
Lane Group	NBL	NBR	NET	NER	SWL	SWT
Lane Configurations	Y		† †			^
Traffic Volume (vph)	214	205	469	0	0	18
Future Volume (vph)	214	523	855	0	0	18
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	0.95	1.00	1.00	0.91
Frt	0.904	1.00	0.75	1.00	1.00	0.71
Flt Protected	0.986					
Satd. Flow (prot)	1660	0	3539	0	0	5085
Flt Permitted	0.986	0	5557	0	0	5005
Satd. Flow (perm)	1660	0	3539	0	0	5085
	1000	Yes	3337	Yes	0	5065
Right Turn on Red	18	res		res		
Satd. Flow (RTOR)			20			20
Link Speed (mph)	30		30			30
Link Distance (ft)	765		397			221
Travel Time (s)	17.4		9.0			5.0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	233	568	929	0	0	20
Shared Lane Traffic (%)						
Lane Group Flow (vph)	801	0	929	0	0	20
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		6			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	10		10			10
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	60	60		60	60	
Turn Type	Prot	00	NA	00	00	NA
Protected Phases	2		4			8
Permitted Phases	2		т			0
Minimum Split (s)	22.5		22.5			22.5
Total Split (s)	37.0		23.0			23.0
Total Split (%)	61.7%		38.3%			38.3%
Maximum Green (s)	32.5		18.5			18.5
Yellow Time (s)	3.5		3.5			3.5
All-Red Time (s)	1.0		1.0			1.0
Lost Time Adjust (s)	0.0		0.0			0.0
Total Lost Time (s)	4.5		4.5			4.5
Lead/Lag						
Lead-Lag Optimize?						
Walk Time (s)	7.0		7.0			7.0
Flash Dont Walk (s)	11.0		11.0			11.0
Pedestrian Calls (#/hr)	5		5			5
Act Effct Green (s)	32.5		18.5			18.5
Actuated g/C Ratio	0.54		0.31			0.31
v/c Ratio	0.88		0.85			0.01
Control Delay	26.3		29.2			14.5
Queue Delay	0.0		0.0			0.0
Total Delay	26.3		29.2			14.5
TUIAI Delay	20.3		29.2			14.0

05b AM BUILD DIA & Dist Ctr 1 R 10:43 am 04/05/2022

Lanes, Volumes, Timings 13: VA 286 NB Ramps

	1	1	×	4	4	*
Lane Group	NBL	NBR	NET	NER	SWL	SWT
LOS	С		С			В
Approach Delay	26.3		29.2			14.5
Approach LOS	С		С			В
Queue Length 50th (ft)	225		163			1
Queue Length 95th (ft)	#461		#262			6
Internal Link Dist (ft)	685		317			141
Turn Bay Length (ft)						
Base Capacity (vph)	907		1091			1567
Starvation Cap Reductn	0		0			0
Spillback Cap Reductn	0		0			0
Storage Cap Reductn	0		0			0
Reduced v/c Ratio	0.88		0.85			0.01
Intersection Summary						
Area Type:	Other					
Cycle Length: 60						
Actuated Cycle Length: 60						
Offset: 0 (0%), Referenced	to phase 2:1	VBL and	6:, Start c	of Green		
Natural Cycle: 60						
Control Type: Pretimed						
Maximum v/c Ratio: 0.88						
Intersection Signal Delay: 2				In	tersectior	n LOS: C
Intersection Capacity Utilization	ation 44.9%			IC	CU Level	of Service A
Analysis Period (min) 15						
# 95th percentile volume	exceeds cap	bacity, qu	eue may	be longer	r.	
Queue shown is maximi						
Splits and Phases: 13:						

▶ Ø2 (R)	≯ Ø4	
37 s	23 s	
	¥ ø8	
	23 s	

Lanes, Volumes, Timings 17: VA 286 SB Ramps

	4	×	2	*	×	ť	3	×	4	<u>í</u>	*	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ኘኘ	eî 👘	1	1		1		^	1	1	<u></u>	
Traffic Volume (vph)	396	7	410	2	0	9	0	442	11	6	199	0
Future Volume (vph)	721	7	410	2	0	9	0	503	11	6	199	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.97	0.95	0.95	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt		0.855	0.850			0.850			0.850			
Flt Protected	0.950			0.950						0.950		
Satd. Flow (prot)	3433	1513	1504	1770	0	1583	0	3539	1583	1770	3539	0
Flt Permitted	0.950			0.610						0.432		
Satd. Flow (perm)	3433	1513	1504	1136	0	1583	0	3539	1583	805	3539	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		219	227			36			36			
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		872			347			301			374	
Travel Time (s)		19.8			7.9			6.8			8.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	784	8	446	2	0	10	0	547	12	7	216	0
Shared Lane Traffic (%)			49%									
Lane Group Flow (vph)	784	227	227	2	0	10	0	547	12	7	216	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		24	g		24	- i gi i i		12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		10			10			10			10	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	60		60	60		60	60		60	60		60
Turn Type	Perm	NA	Perm	Perm		Perm		NA	Perm	Perm	NA	
Protected Phases		6						4			8	
Permitted Phases	6		6	2		2			4	8		
Minimum Split (s)	22.5	22.5	22.5	22.5		22.5		22.5	22.5	22.5	22.5	
Total Split (s)	22.5	22.5	22.5	22.5		22.5		22.5	22.5	22.5	22.5	
Total Split (%)	50.0%	50.0%	50.0%	50.0%		50.0%		50.0%	50.0%	50.0%	50.0%	
Maximum Green (s)	18.0	18.0	18.0	18.0		18.0		18.0	18.0	18.0	18.0	
Yellow Time (s)	3.5	3.5	3.5	3.5		3.5		3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0		1.0		1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5		4.5		4.5	4.5	4.5	4.5	
Lead/Lag												
Lead-Lag Optimize?												
Walk Time (s)	7.0	7.0	7.0	7.0		7.0		7.0	7.0	7.0	7.0	
Flash Dont Walk (s)	11.0	11.0	11.0	11.0		11.0		11.0	11.0	11.0	11.0	
Pedestrian Calls (#/hr)	5	5	5	5		5		5	5	5	5	
Act Effct Green (s)	18.0	18.0	18.0	18.0		18.0		18.0	18.0	18.0	18.0	
Actuated g/C Ratio	0.40	0.40	0.40	0.40		0.40		0.40	0.40	0.40	0.40	
v/c Ratio	0.57	0.31	0.31	0.00		0.02		0.39	0.02	0.02	0.15	
Control Delay	12.5	3.2	3.0	8.0		1.0		4.8	0.2	8.5	9.0	
Queue Delay	0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0	0.0	
Total Delay	12.5	3.2	3.0	8.0		1.0		4.8	0.2	8.5	9.0	

05b AM BUILD DIA & Dist Ctr 1 R 10:43 am 04/05/2022

Synchro 11 Report Page 3

Lanes, Volumes, Timings 17: VA 286 SB Ramps

	4	\mathbf{x}	2	-	×	ť	3	×	~	4	*	*~
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
LOS	В	А	А	А		А		А	А	А	А	
Approach Delay		9.1			2.2			4.7			9.0	
Approach LOS		А			А			А			А	
Queue Length 50th (ft)	76	1	0	0		0		16	0	1	17	
Queue Length 95th (ft)	118	32	30	3		2		23	m0	6	33	
Internal Link Dist (ft)		792			267			221			294	
Turn Bay Length (ft)												
Base Capacity (vph)	1373	736	737	454		654		1415	654	322	1415	
Starvation Cap Reductn	0	0	0	0		0		0	0	0	0	
Spillback Cap Reductn	0	0	0	0		0		0	0	0	0	
Storage Cap Reductn	0	0	0	0		0		0	0	0	0	
Reduced v/c Ratio	0.57	0.31	0.31	0.00		0.02		0.39	0.02	0.02	0.15	
Intersection Summary												
J1	Other											
Cycle Length: 45												
Actuated Cycle Length: 45												
Offset: 0 (0%), Referenced to	o phase 2:	VWL and	6:SETL,	Start of G	Green							
Natural Cycle: 45												
Control Type: Pretimed												
Maximum v/c Ratio: 0.57												
Intersection Signal Delay: 7.8					tersectior							
Intersection Capacity Utilizat	ion 38.9%			IC	U Level	of Service	A					
Analysis Period (min) 15												
m Volume for 95th percent	ile queue i	s metereo	l by upstr	eam sign	al.							
Splits and Phases: 17:												
					—							
🖉 🖉 🖉 🖉 🖉						Ø4						

🔎 🖉 (R)	A@4
22.5 s	22.5 s
X Ø6 (R)	× Ø8
22.5 s	22.5 s

	-	\mathbf{r}	-	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	A			<u></u>		1
Traffic Volume (vph)	144	0	0	60	0	0
Future Volume (vph)	470	0	0	222	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	1.00	0.95	1.00	1.00
Frt						
Flt Protected						
Satd. Flow (prot)	3539	0	0	3539	0	1863
Flt Permitted						
Satd. Flow (perm)	3539	0	0	3539	0	1863
Link Speed (mph)	30			30	30	
Link Distance (ft)	404			491	211	
Travel Time (s)	9.2			11.2	4.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	511	0	0	241	0	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	511	0	0	241	0	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Right
Median Width(ft)	12			24	0	
Link Offset(ft)	0			6	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15		15	9
Sign Control	Free			Free	Stop	
Intersection Summary						
51	Other					
Control Type: Unsignalized						
Intersection Capacity Utiliza	tion 7.3%			IC	U Level o	of Service
Analysis Dariad (min) 1E						

Lanes, Volumes, Timings 25: Rolling Road

	×	*	, st	>	2	3	*	/	6	*	×	
Lane Group	WBL	WBR	SEL2	SEL	SER	NEL	NET	NER	SWL	SWT	SWR	
Lane Configurations				Ä	1	<u> </u>	† †	1		† †	1	
Traffic Volume (vph)	0	0	11	40	39	79	434	351	0	518	45	
Future Volume (vph)	0	0	16	40	39	79	490	351	0	518	45	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	0	0		0	0	250		0	0		0	
Storage Lanes	0	0		1	1	1		1	0		1	
Taper Length (ft)	100			100		100			100			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Frt					0.850			0.850			0.850	
Flt Protected				0.950		0.950						
Satd. Flow (prot)	0	0	0	1770	1583	1770	3539	1583	0	3539	1583	
Flt Permitted				0.950		0.441						
Satd. Flow (perm)	0	0	0	1770	1583	821	3539	1583	0	3539	1583	
Right Turn on Red					Yes			Yes			Yes	
Satd. Flow (RTOR)					42			382			49	
Link Speed (mph)	30			30			30			30		
Link Distance (ft)	601			719			925			301		
Travel Time (s)	13.7			16.3			21.0			6.8		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	0	0	17	43	42	86	533	382	0	563	49	
Shared Lane Traffic (%)	Ŭ	Ŭ		10		00	000	002	0	000	.,	
Lane Group Flow (vph)	0	0	0	60	42	86	533	382	0	563	49	
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right	
Median Width(ft)	0	5		12	J -		12	J -		12	9	
Link Offset(ft)	0			0			0			0		
Crosswalk Width(ft)	10			10			10			10		
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)	60	60	60	60	60	60		60	60		60	
Turn Type			D.Pm	Prot	Perm	Perm	NA	Perm		NA	Perm	
Protected Phases				6!			4			6!		
Permitted Phases			6!		6	4		4			6	
Minimum Split (s)			22.5	22.5	22.5	22.5	22.5	22.5		22.5	22.5	
Total Split (s)			22.5	22.5	22.5	22.5	22.5	22.5		22.5	22.5	
Total Split (%)			50.0%	50.0%	50.0%	50.0%	50.0%	50.0%		50.0%	50.0%	
Maximum Green (s)			18.0	18.0	18.0	18.0	18.0	18.0		18.0	18.0	
Yellow Time (s)			3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)			1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)				0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)				4.5	4.5	4.5	4.5	4.5		4.5	4.5	
Lead/Lag												
Lead-Lag Optimize?												
Walk Time (s)			7.0	7.0	7.0	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)			11.0	11.0	11.0	11.0	11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)			5	5	5	5	5	5		5	5	
Act Effct Green (s)			5	18.0	18.0	18.0	18.0	18.0		18.0	18.0	
Actuated g/C Ratio				0.40	0.40	0.40	0.40	0.40		0.40	0.40	
v/c Ratio				0.40	0.06	0.40	0.38	0.40		0.40	0.07	
				0.00	0.00	0.20	0.00	0.11		0.10	0.07	

05b AM BUILD DIA & Dist Ctr 1 R 10:43 am 04/05/2022

Synchro 11 Report Page 6

Lanes, Volumes, Timings 25: Rolling Road

	*	~	-	×+	2	5	×	/	6	*	*	
Lane Group	WBL	WBR	SEL2	SEL	SER	NEL	NET	NER	SWL	SWT	SWR	
Control Delay				8.9	3.8	11.7	10.5	3.2		11.3	4.2	
Queue Delay				0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay				8.9	3.8	11.7	10.5	3.2		11.3	4.2	
LOS				А	А	В	В	А		В	А	
Approach Delay				6.8			7.8			10.8		
Approach LOS				А			А			В		
Queue Length 50th (ft)				9	0	14	48	0		63	3	
Queue Length 95th (ft)				25	12	39	77	38		78	14	
Internal Link Dist (ft)	521			639			845			221		
Turn Bay Length (ft)						250						
Base Capacity (vph)				708	658	328	1415	862		1415	662	
Starvation Cap Reductn				0	0	0	0	0		0	0	
Spillback Cap Reductn				0	0	0	0	0		0	0	
Storage Cap Reductn				0	0	0	0	0		0	0	
Reduced v/c Ratio				0.08	0.06	0.26	0.38	0.44		0.40	0.07	
Intersection Summary												
Area Type: Oth	ner											
Cycle Length: 45												
Actuated Cycle Length: 45												
Offset: 0 (0%), Referenced to p	hase 2:	and 6:SE	SW, Star	t of Greei	n							
Natural Cycle: 45												
Control Type: Pretimed												
Maximum v/c Ratio: 0.44												
Intersection Signal Delay: 8.8				In	tersection	LOS: A						
Intersection Capacity Utilization	n 34.1%			IC	U Level o	f Service	А					
Analysis Period (min) 15												
Phase conflict between lane	e groups											

Splits and Phases: 25:

	X _{Ø4}
	22.5 s
₩ Ø6 (R)	
22.5 s	

	۶	\mathbf{i}	1	†	Ļ	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	<u> </u>	1	5		^	1
Traffic Volume (vph)	0	0	0	673	28	0
Future Volume (vph)	0	0	378	999	28	162
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
	0	001900	250	1900	1900	1900
Storage Length (ft)						
Storage Lanes	1	1	1			1
Taper Length (ft)	100	1.00	25	0.05	0.05	1 0 0
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	1.00
Frt						0.850
Flt Protected			0.950			
Satd. Flow (prot)	1863	1863	1770	3539	3539	1583
Flt Permitted			0.737			
Satd. Flow (perm)	1863	1863	1373	3539	3539	1583
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)						176
Link Speed (mph)	30			30	30	
Link Distance (ft)	755			451	920	
Travel Time (s)	17.2			10.3	20.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0.72	0.72	411	1086	30	176
Shared Lane Traffic (%)	0	U	111	1000		170
Lane Group Flow (vph)	0	0	411	1086	30	176
Enter Blocked Intersection	No	No	No	No	No	No
			Left			
Lane Alignment	Left	Right	Leit	Left	Left	Right
Median Width(ft)	12			24	6	
Link Offset(ft)	0			-6	6	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	60	60	60			60
Number of Detectors	1	1	1	2	2	1
Detector Template	Left	Right	Left	Thru	Thru	Right
Leading Detector (ft)	20	20	20	100	100	20
Trailing Detector (ft)	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0
Detector 1 Size(ft)	20	20	20	6	6	20
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel	OITEA		OIFLA		OIFLA	OIFLA
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0
()		0.0				
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)				94	94	
Detector 2 Size(ft)				6	6	
Detector 2 Type				CI+Ex	CI+Ex	
Detector 2 Channel						
Detector 2 Extend (s)				0.0	0.0	
Turn Type	Prot	Perm	Perm	NA	NA	Perm
Protected Phases	4			2	6	
Permitted Phases		4	2			6
			-			<u> </u>

05b AM BUILD DIA & Dist Ctr 1 R 10:43 am 04/05/2022

	۶	\mathbf{i}	1	1	Ļ	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Detector Phase	4	4	2	2	6	6
Switch Phase	4	7	2	2	0	0
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5
Total Split (s)	22.5	22.5	22.5	22.5	22.5	22.5
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%
Maximum Green (s)	18.0	18.0	18.0	18.0	18.0	18.0
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	C-Max	C-Max	C-Max	C-Max
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	5	5	5	5	5	5
Act Effct Green (s)			39.6	39.6	39.6	39.6
Actuated g/C Ratio			0.88	0.88	0.88	0.88
v/c Ratio			0.34	0.35	0.01	0.12
Control Delay			7.1	4.4	2.6	3.2
Queue Delay			0.0	0.0	0.0	0.0
Total Delay			7.1	4.4	2.6	3.2
LOS			A	A	2.0 A	A
Approach Delay				5.1	3.1	
Approach LOS				A	A	
Queue Length 50th (ft)			0	0	0	0
Queue Length 95th (ft)			#207	181	11	73
Internal Link Dist (ft)	675			371	840	10
Turn Bay Length (ft)	575		250	0/1	010	150
Base Capacity (vph)			1208	3114	3114	1414
Starvation Cap Reductn			0	0	0	0
Spillback Cap Reductn			0	0	0	0
Storage Cap Reductn			0	0	0	0
Reduced v/c Ratio			0.34	0.35	0.01	0.12
Intersection Summary						
Area Type:	Other					
Cycle Length: 45						
Actuated Cycle Length: 45						
Offset: 0 (0%), Reference	d to phase 2:	NBTL an	d 6:SBT,	Start of C	Green	
Natural Cycle: 50						
Control Type: Actuated-Co	pordinated					
Maximum v/c Ratio: 0.35						
Intersection Signal Delay:	4.9			li	ntersectio	n LOS: A
Intersection Capacity Utiliz				[(CU Level	of Service
Analysis Period (min) 15						
# 95th percentile volume	e exceeds ca	pacity, qu	Leue may	be longe	er.	

95th percentile volume exceeds capacity, queue may be longer.

05b AM BUILD DIA & Dist Ctr 1 R 10:43 am 04/05/2022

Queue shown is maximum after two cycles.

Splits and Phases: 28:

	4	1	*	×	×	ŧ۷		
Lane Group	SBL	SBR	NEL	NET	SWT	SWR		
Lane Configurations		77	۲	र्स				
Traffic Volume (vph)	0	28	165	508	0	0		
Future Volume (vph)	0	190	491	508	0	0		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Util. Factor	1.00	0.88	0.95	0.95	1.00	1.00		
Frt		0.850						
Flt Protected			0.950	0.996				
Satd. Flow (prot)	0	2787	1681	1763	0	0		
Flt Permitted			0.950	0.996				
Satd. Flow (perm)	0	2787	1681	1763	0	0		
Link Speed (mph)	30			30	30			
Link Distance (ft)	227			920	549			
Travel Time (s)	5.2			20.9	12.5			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	0	207	534	552	0	0		
Shared Lane Traffic (%)			10%					
Lane Group Flow (vph)	0	207	481	605	0	0		
Enter Blocked Intersection	No	No	No	No	No	No		
Lane Alignment	Left	Right	Left	Left	Left	Right		
Median Width(ft)	12			36	36			
Link Offset(ft)	0			0	0			
Crosswalk Width(ft)	10			10	10			
Two way Left Turn Lane								
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Turning Speed (mph)	15	9	15			9		
Sign Control	Free			Free	Free			
Intersection Summary								
Area Type:	Other							
Control Type: Unsignalized								
Intersection Capacity Utiliza	tion 27.9%			IC	CU Level o	of Service A	А	
Analysis Poriod (min) 15								

Lanes, Volumes, Timings 34: VA 286 SB Loop

	-#	7	•	×	*	1
Lane Group	EBL	EBR	NEL	NET	SWT	SWR
Lane Configurations				^	<u></u>	1
Traffic Volume (vph)	0	0	0	847	205	27
Future Volume (vph)	0	0	0	1233	205	27
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	1.00
Frt						0.850
Flt Protected						
Satd. Flow (prot)	0	0	0	3539	3539	1583
Flt Permitted						
Satd. Flow (perm)	0	0	0	3539	3539	1583
Link Speed (mph)	30			30	30	
Link Distance (ft)	818			374	654	
Travel Time (s)	18.6			8.5	14.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	1340	223	29
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	0	0	1340	223	29
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	60	60	60			60
Sign Control	Free			Free	Free	
Intersection Summary						
21	Other					
Control Type: Unsignalized						
Intersection Capacity Utilization	tion 26.7%			IC	U Level	of Service /
Analysis Dariad (min) 1E						

	×	۲	×	/	6	*	
Lane Group	WBL	WBR	NET	NER	SWL	SWT	
Lane Configurations			^	1		<u> </u>	
Traffic Volume (vph)	0	0	469	380	0	232	
Future Volume (vph)	0	0	855	380	0	232	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	0.95	1.00	1.00	0.91	
Frt				0.850			
Flt Protected							
Satd. Flow (prot)	0	0	3539	1583	0	5085	
Flt Permitted							
Satd. Flow (perm)	0	0	3539	1583	0	5085	
Link Speed (mph)	30		30			30	
Link Distance (ft)	815		654			397	
Travel Time (s)	18.5		14.9			9.0	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	0	0	929	413	0	252	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	0	0	929	413	0	252	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Left	
Median Width(ft)	0	Ŭ	12	5		12	
Link Offset(ft)	0		0			0	
Crosswalk Width(ft)	10		10			10	
Two way Left Turn Lane							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)	60	60		60	60		
Sign Control	Free		Free			Free	
Intersection Summary							
Area Type: C	Other						
Control Type: Unsignalized							
Intersection Capacity Utilizati	on 44.9%			IC	U Level o	of Service	eΑ

Lanes, Volumes, Timings 101: VA 286 NB Directional Ramp

		R	3	×	*	~	
Lane Group	EBL	EBR	NEL	NET	SWT	SWR	
Lane Configurations				† †	^	1	
Traffic Volume (vph)	0	0	0	674	18	10	
Future Volume (vph)	0	0	0	1378	18	10	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	0.95	0.91	1.00	
Frt						0.850	
Flt Protected							
Satd. Flow (prot)	0	0	0	3539	5085	1583	
Flt Permitted							
Satd. Flow (perm)	0	0	0	3539	5085	1583	
Link Speed (mph)	30			30	30		
Link Distance (ft)	1042			221	359		
Travel Time (s)	23.7			5.0	8.2		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	0	0	0	1498	20	11	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	0	0	0	1498	20	11	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(ft)	8			0	6		
Link Offset(ft)	0			0	0		
Crosswalk Width(ft)	10			10	10		
Two way Left Turn Lane							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)	15	9	15			9	
Sign Control	Free			Free	Free		
Intersection Summary							
51	Other						
Control Type: Unsignalized							
Intersection Capacity Utilizat	tion 22.0%			IC	CU Level	of Service	e A
Analysis Doriod (min) 15							

	ų,	¥	÷.	*	*	4
Lane Group	SBL	SBR	NWL	NWR	NEL	NER
Lane Configurations	<u> </u>	77	<u>`````````````````````````````````````</u>	1	ኘካ	1121
Traffic Volume (vph)	0	28	0	7	666	8
Future Volume (vph)	0	28	0	7	1370	8
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	0	500	0	0
Storage Lanes	1	2	1	1	2	1
Taper Length (ft)	25	2	25	1	25	
Lane Util. Factor	1.00	0.88	1.00	1.00	0.97	1.00
Frt	1.00	0.850	1.00	0.850	0.77	0.850
Flt Protected		0.000		0.000	0.950	0.000
Satd. Flow (prot)	1863	2787	1863	1583	3433	1583
Flt Permitted	1005	2101	1005	1000	0.950	1303
Satd. Flow (perm)	1863	2787	1863	1583	3433	1583
Right Turn on Red	1005	Yes	1005	Yes	1400	Yes
Satd. Flow (RTOR)		1920		471		9
Link Speed (mph)	30	1720	30	4/1	30	7
Link Distance (ft)	570		723		430	
Travel Time (s)	13.0		16.4		430 9.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	9.0 0.92	0.92
Adj. Flow (vph)	0.92	0.92	0.92	0.92	1489	0.92
Shared Lane Traffic (%)	0	50	0	U	1407	7
Lane Group Flow (vph)	0	30	0	8	1489	9
Enter Blocked Intersection	No	No	No	o No	1469 No	9 No
Lane Alignment	Left	Right	Left	Right	Left	Right
Median Width(ft)	30	Right	32	Right	32	Right
Link Offset(ft)	30		5Z 0		5Z 0	
Crosswalk Width(ft)	30 10		10		10	
Two way Left Turn Lane	10		10		10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph) Number of Detectors						9
	0 Thru	0 Thru	0 Thru	0 Thru	0 Thru	
Detector Template	Thru	Thru	Thru	Thru	Thru	Thru
Leading Detector (ft)	0	0	0	0	0	0
Trailing Detector (ft)	0 Drot	0	0 Drot	0 Dorm	0 Drot	0 Dorm
Turn Type	Prot	pt+ov	Prot	Perm	Prot	Perm
Protected Phases	5	56	4	4	6	,
Permitted Phases	-	F /		4		6
Detector Phase	5	56	4	4	6	6
Switch Phase	F 0		F 0		F 0	F 0
Minimum Initial (s)	5.0		5.0	5.0	5.0	5.0
Minimum Split (s)	22.5		22.5	22.5	22.5	22.5
Total Split (s)	15.5		15.5	15.5	19.0	19.0
Total Split (%)	31.0%		31.0%	31.0%	38.0%	38.0%
Maximum Green (s)	11.0		11.0	11.0	14.5	14.5
Yellow Time (s)	3.5		3.5	3.5	3.5	3.5
All-Red Time (s)	1.0		1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5		4.5	4.5	4.5	4.5
Lead/Lag	Lead				Lag	Lag

05b AM BUILD DIA & Dist Ctr 1 R 10:43 am 04/05/2022

Synchro 11 Report Page 15

	ų,	¥		*	*	~
Lane Group	SBL	SBR	NWL	NWR	NEL	NER
Lead-Lag Optimize?	Yes				Yes	Yes
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Recall Mode	None		None	None	C-Max	C-Max
Walk Time (s)	7.0		7.0	7.0	7.0	7.0
Flash Dont Walk (s)	11.0		11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	0		0	0	0	0
Act Effct Green (s)		47.1		5.5	45.1	45.1
Actuated g/C Ratio		0.94		0.11	0.90	0.90
v/c Ratio		0.01		0.01	0.48	0.01
Control Delay		0.0		0.0	4.7	2.8
Queue Delay		0.0		0.0	0.0	0.0
Total Delay		0.0		0.0	4.7	2.8
LOS		A		A	A	A
Approach Delay					4.7	
Approach LOS					A	
Queue Length 50th (ft)		0		0	0	0
Queue Length 95th (ft)		0		0	#281	5
Internal Link Dist (ft)	490	-	643	2	350	-
Turn Bay Length (ft)				500		
Base Capacity (vph)		2737		715	3096	1429
Starvation Cap Reductn		0		0	0	0
Spillback Cap Reductn		0		0	0	0
Storage Cap Reductn		0		0	0	0
Reduced v/c Ratio		0.01		0.01	0.48	0.01
Intersection Summary		-				-
Area Type:	Other					
Cycle Length: 50						
Actuated Cycle Length: 50						
Offset: 0 (0%), Referenced		NEL. Sta	rt of Gree	n		
Natural Cycle: 90						
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.48						
Intersection Signal Delay:	4.6			lı	ntersectio	n LOS: A
Intersection Capacity Utiliz						of Service
Analysis Period (min) 15						
# 95th percentile volume	exceeds ca	nacity ou	eue may	be longe	۲.	
Queue shown is maxim			icae may	so longe		
		5901051				
Splits and Phases: 102:						

A Ø5	📕 🦊 Ø6 (R)	▶ [≜] Ø4
15.5 s	19 s	15.5 s

	-	\mathbf{F}	∢	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u></u>			†	ኘካ	1
Traffic Volume (vph)	165	0	0	28	0	0
Future Volume (vph)	491	0	0	190	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	1.00	1.00	0.95	0.97	1.00
Frt	0.75	1.00	1.00	0.75	0.77	1.00
Flt Protected						
Satd. Flow (prot)	3539	0	0	3539	3614	1863
Flt Permitted	3337	0	0	3337	3014	1005
Satd. Flow (perm)	3539	0	0	3539	3614	1863
Right Turn on Red	3337	Yes	0	3337	3014	Yes
Satd. Flow (RTOR)		162				162
	30			20	20	
Link Speed (mph)				30 522	30	
Link Distance (ft)	923			533	500	
Travel Time (s)	21.0	0.00	0.00	12.1	11.4	0.00
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	534	0	0	207	0	0
Shared Lane Traffic (%)		-	-	0.07	-	-
Lane Group Flow (vph)	534	0	0	207	0	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	24	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15		15	9
Number of Detectors	2			2	1	1
Detector Template	Thru			Thru	Left	Right
Leading Detector (ft)	100			100	20	20
Trailing Detector (ft)	0			0	0	0
Detector 1 Position(ft)	0			0	0	0
Detector 1 Size(ft)	6			6	20	20
Detector 1 Type	CI+Ex			CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel	5 <u>L</u> R			2 <u>2</u> .	/	n
Detector 1 Extend (s)	0.0			0.0	0.0	0.0
Detector 1 Queue (s)	0.0			0.0	0.0	0.0
Detector 1 Delay (s)	0.0			0.0	0.0	0.0
Detector 2 Position(ft)	94			94	0.0	0.0
	94 6			94		
Detector 2 Size(ft)						
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel	0.0			0.0		
Detector 2 Extend (s)	0.0			0.0		D
Turn Type	NA			NA	Prot	Perm
Protected Phases	6			2	4	
Permitted Phases						4
Detector Phase	6			2	4	4
Switch Phase						
Minimum Initial (s)	5.0			5.0	5.0	5.0

05b AM BUILD DIA & Dist Ctr 1 R 10:43 am 04/05/2022

Lanes, Volumes, Timings 103: Parking Garage Exit

	-	\mathbf{r}	-	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Minimum Split (s)	22.5			22.5	22.5	22.5
Total Split (s)	22.5			22.5	22.5	22.5
Total Split (%)	50.0%			50.0%	50.0%	50.0%
Maximum Green (s)	18.0			18.0	18.0	18.0
Yellow Time (s)	3.5			3.5	3.5	3.5
All-Red Time (s)	1.0			1.0	1.0	1.0
Lost Time Adjust (s)	0.0			0.0	0.0	0.0
Total Lost Time (s)	4.5			4.5	4.5	4.5
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0			3.0	3.0	3.0
Recall Mode	C-Max			C-Max	None	None
Walk Time (s)	7.0			7.0	7.0	7.0
Flash Dont Walk (s)	11.0			11.0	11.0	11.0
Pedestrian Calls (#/hr)	0			0	0	0
Act Effct Green (s)	45.0			45.0		
Actuated g/C Ratio	1.00			1.00		
v/c Ratio	0.15			0.06		
Control Delay	0.1			0.0		
Queue Delay	0.0			0.0		
Total Delay	0.1			0.0		
LOS	А			А		
Approach Delay	0.1					
Approach LOS	А					
Queue Length 50th (ft)	0			0		
Queue Length 95th (ft)	0			0		
Internal Link Dist (ft)	843			453	420	
Turn Bay Length (ft)						
Base Capacity (vph)	3539			3539		
Starvation Cap Reductn	0			0		
Spillback Cap Reductn	0			0		
Storage Cap Reductn	0			0		
Reduced v/c Ratio	0.15			0.06		
Intersection Summary						
Area Type:	Other					
Cycle Length: 45	0.101					
Actuated Cycle Length: 45						
Offset: 0 (0%), Referenced	to phase 2:\	NBT and	6:EBT.	Start of G	reen	
Natural Cycle: 45						
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.15						
Intersection Signal Delay: ().1			Ir	ntersectio	n LOS: A
Intersection Capacity Utiliz						of Service
Analysis Period (min) 15	5.0.0					2.5.1.00

Splits and Phases: 103:

← ● Ø2 (R)	↑ _{Ø4}	
22.5 s	22.5 s	
₽ → Ø6 (R) 22.5 s		
22.5 s		

	-	\mathbf{i}	4	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	≜ ↑	2013	<u> </u>	<u></u>	<u> </u>	1
Traffic Volume (vph)	144	21	32	28	0	0
Future Volume (vph)	470	21	32	190	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	1.00	0.95	1.00	1.00
Frt	0.994	0.70	1.00	0.70	1.00	1.00
Flt Protected	0.771		0.950			
Satd. Flow (prot)	3518	0	1770	3539	1863	1863
Flt Permitted	0010	0	0.441	0007	1000	1000
Satd. Flow (perm)	3518	0	821	3539	1863	1863
Right Turn on Red	0010	Yes	021	0007	1000	Yes
Satd. Flow (RTOR)	12	103				105
Link Speed (mph)	30			30	30	
Link Distance (ft)	533			404	428	
Travel Time (s)	12.1			9.2	420 9.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0.92 511	23	0.92	207	0.92	0.92
Shared Lane Traffic (%)	511	23	30	207	U	U
Lane Group Flow (vph)	534	0	35	207	0	0
Enter Blocked Intersection	534 No	0 No	35 No	207 No	0 No	No
	Left		Left	Left	Left	
Lane Alignment	Leit 24	Right	Leit	Len 24	Len 20	Right
Median Width(ft)						
Link Offset(ft)	-12 10			8	0 10	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane	1.00	1.00	1.00	1.00	1.00	1.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15 Derm	NIA	15 Dret	9
Turn Type	NA		Perm	NA	Prot	Perm
Protected Phases	4		-	8	2	^
Permitted Phases	00 5		8	00 5	00 5	2
Minimum Split (s)	22.5		22.5	22.5	22.5	22.5
Total Split (s)	22.5		22.5	22.5	22.5	22.5
Total Split (%)	50.0%		50.0%	50.0%	50.0%	50.0%
Maximum Green (s)	18.0		18.0	18.0	18.0	18.0
Yellow Time (s)	3.5		3.5	3.5	3.5	3.5
All-Red Time (s)	1.0		1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5		4.5	4.5	4.5	4.5
Lead/Lag						
Lead-Lag Optimize?						
Walk Time (s)	7.0		7.0	7.0	7.0	7.0
Flash Dont Walk (s)	11.0		11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	0		0	0	0	0
Act Effct Green (s)	18.0		18.0	18.0		
Actuated g/C Ratio	0.40		0.40	0.40		
v/c Ratio	0.38		0.11	0.15		
Control Delay	8.5		9.6	9.0		
Queue Delay	0.0		0.0	0.0		
Total Delay	8.5		9.6	9.0		
	0.0		7.0	7.0		

05b AM BUILD DIA & Dist Ctr 1 R 10:43 am 04/05/2022

	-	\mathbf{Y}	≮	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
LOS	А		А	А		
Approach Delay	8.5			9.1		
Approach LOS	А			А		
Queue Length 50th (ft)	47		5	16		
Queue Length 95th (ft)	37		19	32		
Internal Link Dist (ft)	453			324	348	
Turn Bay Length (ft)						
Base Capacity (vph)	1414		328	1415		
Starvation Cap Reductn	0		0	0		
Spillback Cap Reductn	0		0	0		
Storage Cap Reductn	0		0	0		
Reduced v/c Ratio	0.38		0.11	0.15		
Intersection Summary						
Area Type:	Other					
Cycle Length: 45						
Actuated Cycle Length: 45						
Offset: 0 (0%), Referenced	to phase 2:1	VBL and 6:	, Start (of Green		
Natural Cycle: 45						
Control Type: Pretimed						
Maximum v/c Ratio: 0.38						
Intersection Signal Delay:					tersectior	
Intersection Capacity Utiliz	ation 16.3%			IC	U Level of	of Service A
Analysis Period (min) 15						

Splits and Phases: 104:

• 1 [√] ø2 (R)	→ Ø4	
22.5 s	22.5 s	
	₩ Ø8	
	22.5 s	

	-	\mathbf{r}	-	-	1	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	† †	1	۲	† †	ሻቸ		
Traffic Volume (vph)	87	57	544	39	22	19	
Future Volume (vph)	87	383	674	201	22	19	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	0.95	1.00	1.00	0.95	0.97	0.95	
Frt	5.70	0.850	1.00	0.70	0.930	0.70	
Flt Protected			0.950		0.974		
Satd. Flow (prot)	3539	1583	1770	3539	3273	0	
Flt Permitted	0007	,000	0.568		0.974	v	
Satd. Flow (perm)	3539	1583	1058	3539	3273	0	
Right Turn on Red		Yes		0007	0270	Yes	
Satd. Flow (RTOR)		416			21	105	
Link Speed (mph)	30	10		30	30		
Link Distance (ft)	491			971	1149		
Travel Time (s)	11.2			22.1	26.1		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	95	416	733	218	24	0.92	
Shared Lane Traffic (%)	7.5	410	100	210	24	21	
Lane Group Flow (vph)	95	416	733	218	45	0	
Enter Blocked Intersection	95 No	410 No	No	No	45 No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(ft)	24	Right	Leit	24	24	Nynt	
Link Offset(ft)	0			24	24		
Crosswalk Width(ft)	10			10	10		
Two way Left Turn Lane	10			10	10		
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	
	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)	2			2		9	
Number of Detectors	2 Thru	1 Diabt	1 Loft	2 Thru	1 Loft		
Detector Template	Thru	Right	Left	Thru	Left		
Leading Detector (ft)	100	20	20	100	20		
Trailing Detector (ft)	0	0	0	0	0		
Detector 1 Position(ft)	0	0	0	0	0		
Detector 1 Size(ft)	6	20	20	6	20		
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		
Detector 1 Channel	0.0	0.0	0.0	0.0	0.0		
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		
Detector 2 Position(ft)	94			94			
Detector 2 Size(ft)	6			6			
Detector 2 Type	CI+Ex			CI+Ex			
Detector 2 Channel							
Detector 2 Extend (s)	0.0	5		0.0			
Turn Type	NA	Perm	pm+pt	NA	Prot		
Protected Phases	6		5	2	4		
Permitted Phases		6	2				
Detector Phase	6	6	5	2	4		
Switch Phase							
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0		

05b AM BUILD DIA & Dist Ctr 1 R 10:43 am 04/05/2022

	-	\mathbf{r}	4	-	•	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Minimum Split (s)	20.0	20.0	9.5	22.5	15.0	
Total Split (s)	15.0	15.0	20.0	35.0	15.0	
Total Split (%)	30.0%	30.0%	40.0%	70.0%	30.0%	
Maximum Green (s)	10.5	10.5	15.5	30.5	10.5	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	
Lead/Lag	Lag	Lag	Lead			
Lead-Lag Optimize?	Yes	Yes	Yes			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	C-Max	C-Max	None	C-Max	None	
Walk Time (s)	7.0	7.0				
Flash Dont Walk (s)	11.0	11.0				
Pedestrian Calls (#/hr)	0	0				
Act Effct Green (s)	23.2	23.2	41.1	43.8	6.0	
Actuated g/C Ratio	0.46	0.46	0.82	0.88	0.12	
v/c Ratio	0.06	0.43	0.69	0.07	0.11	
Control Delay	12.6	4.2	6.8	0.8	13.9	
Queue Delay	0.0	0.0 4.2	0.0 6.8	0.0	0.0	
Total Delay LOS	12.6 B	4.2 A		0.8	13.9 B	
	5.8	А	А	A 5.4	В 13.9	
Approach Delay Approach LOS	5.8 A			5.4 A	13.9 B	
Queue Length 50th (ft)	4	0	12	A 0	B 3	
Queue Length 95th (ft)	26	58	#124	7	3 14	
Internal Link Dist (ft)	411	50	#1∠4	891	1069	
Turn Bay Length (ft)	411			071	1007	
Base Capacity (vph)	1643	958	1112	3099	703	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.06	0.43	0.66	0.07	0.06	
Intersection Summary						
Area Type:	Other					
Cycle Length: 50	Unc					
Actuated Cycle Length: 50						
Offset: 0 (0%), Referenced	to phase 2	·WBTL ar	nd 6.EBT	Start of (Green	
Natural Cycle: 60	to phase z				010011	
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.69	c. an latou					
Intersection Signal Delay: 5	5.8			lr	ntersectior	n LOS: A
Intersection Capacity Utiliza		,)				of Service A
Analysis Period (min) 15					2 20101	
# 95th percentile volume	exceeds ca	apacity, qu	Jeue mav	be longe	er.	
Queue shown is maximi						

Lanes, Volumes, Timings 106: FBNA CDC Entrance

04/10/2022

	≯	-	\mathbf{i}	4	+	×.	•	Ť	1	1	Ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		<u></u>			<u></u>			•			•	
Traffic Volume (vph)	0	99	7	150	582	15	0	0	4	0	0	0
Future Volume (vph)	0	99	7	150	874	15	0	0	4	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.990			0.998			0.865				
Flt Protected					0.993							
Satd. Flow (prot)	0	3504	0	0	3507	0	0	1611	0	0	1863	0
Flt Permitted					0.993							
Satd. Flow (perm)	0	3504	0	0	3507	0	0	1611	0	0	1863	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		971			260			262			305	
Travel Time (s)		22.1			5.9			6.0			6.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	108	8	163	950	16	0	0	4	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	116	0	0	1129	0	0	4	0	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		16			16			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		10			10			10			10	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
Area Type: C)ther											
Control Type: Unsignalized												
Intersection Capacity Utilizati	on 34.2%			IC	CU Level	of Service	A					
Analysis Poriod (min) 15												

	-	\mathbf{r}	4	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u></u>			↑ ↑		
Traffic Volume (vph)	71 92	10	9	H T 540	207	
Future Volume (vph)	92	10	9 107	832	207	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	14	1300	1300	1300	1300
Lane Util. Factor	0.95	1.00	0.95	0.95	1.00	1.00
Frt	0.75	0.850	0.75	0.75	1.00	0.850
Flt Protected		0.050		0.994	0.950	0.050
Satd. Flow (prot)	3539	1689	0	3518	1770	1583
Flt Permitted	5557	1007	U	0.904	0.950	1000
Satd. Flow (perm)	3539	1689	0	3199	1770	1583
Right Turn on Red	3039	Yes	U	J177	1770	Yes
Satd. Flow (RTOR)		11				res 4
, , ,	20	11		20	20	4
Link Speed (mph)	30			30	30	
Link Distance (ft)	777			738	307	
Travel Time (s)	17.7	0.00	0.00	16.8	7.0	0.00
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	100	11	116	904	225	4
Shared Lane Traffic (%)				4000	0.05	
Lane Group Flow (vph)	100	11	0	1020	225	4
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	R NA	Left	Left	Left	Right
Median Width(ft)	16			16	36	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane						
Headway Factor	1.00	0.92	1.00	1.00	1.00	1.00
Turning Speed (mph)		15	15		15	9
Number of Detectors	2	1	1	2	1	1
Detector Template	Thru	Right	Left	Thru	Left	Right
Leading Detector (ft)	100	20	20	100	20	20
Trailing Detector (ft)	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0
Detector 1 Size(ft)	6	20	20	6	20	20
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)	94			94		
Detector 2 Size(ft)	6			6		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA	Perm	pm+pt	NA	Prot	Perm
Protected Phases	6	1 0111	5	2	4	
Permitted Phases	0	6	2	2	т	4
Detector Phase	6	6	5	2	4	4
	0	0	5	Z	4	4
Switch Phase						

05b AM BUILD DIA & Dist Ctr 1 R 10:43 am 04/05/2022

04/10/2022

	-	\mathbf{r}	4	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	22.5	22.5	9.5	22.5	22.5	22.5
Total Split (s)	20.0	20.0	8.5	28.5	21.5	21.5
Total Split (%)	40.0%	40.0%	17.0%	57.0%	43.0%	43.0%
Maximum Green (s)	15.5	15.5	4.0	24.0	17.0	17.0
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5		4.5	4.5	4.5
Lead/Lag	Lag	Lag	Lead			
Lead-Lag Optimize?	Yes	Yes	Yes			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	C-Max	C-Max	None	C-Max	None	None
Walk Time (s)	7.0	7.0		7.0	7.0	7.0
Flash Dont Walk (s)	11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/hr)	0	0		0	0	0
Act Effct Green (s)	29.5	29.5		29.5	11.5	11.5
Actuated g/C Ratio	0.59	0.59		0.59	0.23	0.23
v/c Ratio	0.05	0.01		0.54	0.55	0.23
Control Delay	1.8	0.4		8.1	21.5	9.0
Queue Delay	0.0	0.0		0.0	0.0	0.0
Total Delay	1.8	0.4		8.1	21.5	9.0
LOS	A	A		A	C	A
Approach Delay	1.6	,,		8.1	21.3	
Approach LOS	A			A	C	
Queue Length 50th (ft)	7	1		70	58	0
Queue Length 95th (ft)	1	0		137	98	5
Internal Link Dist (ft)	697			658	227	v
Turn Bay Length (ft)	571			200	,	
Base Capacity (vph)	2085	999		1884	601	540
Starvation Cap Reductn	2005	0		0	0	0
Spillback Cap Reductn	0	0		0	0	0
Storage Cap Reductn	0	0		0	0	0
Reduced v/c Ratio	0.05	0.01		0.54	0.37	0.01
Intersection Summary	0.00	0.01		0.01	0.07	0.01
Area Type:	Other					
Cycle Length: 50	Uner					
Actuated Cycle Length: 50						
Offset: 0 (0%), Referenced		M/RTL or	Nd 6.ERT	Start of (Graan	
Natural Cycle: 55	i to priase z	WDIL di	UU.EDI,	Start UI	JIEEH	
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.55	orumateu					
	0.0			1.	torcotio	
Intersection Signal Delay:					ntersection	n LOS: A of Service
Intersection Capacity Utiliz Analysis Period (min) 15	.auun 37.5%			Ι	O Level	UI SEIVICE
Splits and Phases: 107:						
4						

 ✓ Ø2 (R)
 ✓ Ø4

 28.5 s
 21.5 s

 ✓ Ø5
 ✓ Ø6 (R)

 8.5 s
 20 s

	۶	\mathbf{r}	1	†	Ļ	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	٦Y	2010	<u>الالال</u>	† †	^	<u> </u>
Traffic Volume (vph)	72	24	317	999	357	232
Future Volume (vph)	72	24	431	999	357	508
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.97	0.95	1.00	0.95	0.95	1.00
Frt	0.962	0.75	1.00	0.75	0.75	0.850
Fit Protected	0.962		0.950			0.000
Satd. Flow (prot)	3351	0	1770	3539	3539	1583
N 7		0		3037	3037	1003
Flt Permitted	0.964	0	0.405	2520	2520	1500
Satd. Flow (perm)	3351	0	754	3539	3539	1583
Right Turn on Red	<u> </u>	Yes				Yes
Satd. Flow (RTOR)	26					552
Link Speed (mph)	30			30	30	
Link Distance (ft)	738			727	965	
Travel Time (s)	16.8			16.5	21.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	78	26	468	1086	388	552
Shared Lane Traffic (%)						
Lane Group Flow (vph)	104	0	468	1086	388	552
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	36	itigin	Lon	12	12	. ugin
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane	10			10	10	
	1.00	1.00	1.00	1.00	1.00	1.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15	NLA	N L A	9
Turn Type	Prot		pm+pt	NA	NA	Perm
Protected Phases	4		5	2	6	
Permitted Phases			2			6
Minimum Split (s)	22.5		9.5	22.5	22.5	22.5
Total Split (s)	15.0		15.0	35.0	20.0	20.0
Total Split (%)	30.0%		30.0%	70.0%	40.0%	40.0%
Maximum Green (s)	10.5		10.5	30.5	15.5	15.5
Yellow Time (s)	3.5		3.5	3.5	3.5	3.5
All-Red Time (s)	1.0		1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5		4.5	4.5	4.5	4.5
Lead/Lag	- т.J		Lead	- J.J	Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Walk Time (s)	7.0		162	7.0		
				7.0	7.0	7.0
Flash Dont Walk (s)	11.0			11.0	11.0	11.0
Pedestrian Calls (#/hr)	0		00 5	0	0	0
Act Effct Green (s)	10.5		30.5	30.5	15.5	15.5
Actuated g/C Ratio	0.21		0.61	0.61	0.31	0.31
v/c Ratio	0.14		0.70	0.50	0.35	0.63
Control Delay	7.5		12.1	6.5	14.5	5.5
Queue Delay	0.0		0.0	0.0	0.0	0.0
	0.0		0.0	0.0	0.0	0.0

05b AM BUILD DIA & Dist Ctr 1 R 10:43 am 04/05/2022

	۶	\mathbf{r}	1	1	Ļ	1	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
LOS	А		В	А	В	А	
Approach Delay	7.5			8.2	9.2		
Approach LOS	А			А	А		
Queue Length 50th (ft)	12		60	77	45	0	
Queue Length 95th (ft)	26		#115	113	74	56	
Internal Link Dist (ft)	658			647	885		
Turn Bay Length (ft)							
Base Capacity (vph)	724		673	2158	1097	871	
Starvation Cap Reductn	0		0	0	0	0	
Spillback Cap Reductn	0		0	0	0	0	
Storage Cap Reductn	0		0	0	0	0	
Reduced v/c Ratio	0.14		0.70	0.50	0.35	0.63	
Intersection Summary							
Area Type:	Other						
Cycle Length: 50							
Actuated Cycle Length: 50							
Offset: 0 (0%), Referenced	I to phase 2:	NBTL and	16:SBT,	Start of G	reen, Mas	ster Interse	ection
Natural Cycle: 60							
Control Type: Pretimed							
Maximum v/c Ratio: 0.70							
Intersection Signal Delay: 8					tersection		-
Intersection Capacity Utiliz	ation 42.8%			IC	U Level c	of Service	A
Analysis Period (min) 15							
# 95th percentile volume			eue may	be longer	·		
Queue shown is maxim	um after two	cycles.					
Calita and Dhassas 100							
Splits and Phases: 108:							

		<u>≁</u> _{Ø4}	
35 s		15 s	
↑ Ø5	📕 🕈 Ø6 (R)		
15 s	20 s		

	†	۴	ų,	Ļ	£	*	
Lane Group	NBT	NBR	SBL	SBT	NWL	NWR	
Lane Configurations	f,			†			
Traffic Volume (vph)	211	0	0	19	0	0	
Future Volume (vph)	211	0	0	117	0	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt							
Flt Protected							
Satd. Flow (prot)	1863	0	0	1863	0	0	
Flt Permitted							
Satd. Flow (perm)	1863	0	0	1863	0	0	
Link Speed (mph)	30			30	30		
Link Distance (ft)	1082			1015	590		
Travel Time (s)	24.6			23.1	13.4		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	229	0	0	127	0	0	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	229	0	0	127	0	0	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(ft)	0			0	0		
Link Offset(ft)	0			0	0		
Crosswalk Width(ft)	10			10	10		
Two way Left Turn Lane							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)		9	15		15	9	
Sign Control	Free			Free	Stop		
Intersection Summary							
Area Type:	Other						
Control Type: Unsignalized							
Intersection Capacity Utiliza	tion 14.4%			IC	U Level o	of Service	Α
Analysis Poriod (min) 15							

	-	\mathbf{r}	-	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	•			•	Y	
Traffic Volume (vph)	28	0	0	19	0	183
Future Volume (vph)	28	0	0	117	98	183
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt					0.912	
Flt Protected					0.983	
Satd. Flow (prot)	1863	0	0	1863	1670	0
Flt Permitted					0.983	
Satd. Flow (perm)	1863	0	0	1863	1670	0
Link Speed (mph)	30			30	30	
Link Distance (ft)	839			634	538	
Travel Time (s)	19.1			14.4	12.2	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	30	0	0	127	107	199
Shared Lane Traffic (%)						
Lane Group Flow (vph)	30	0	0	127	306	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	0			0	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15		15	9
Sign Control	Free			Free	Stop	
Intersection Summary						
51	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 21.3%			IC	CU Level of	of Service A

	≯	-	-		1	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		स	4		ሻ	1
Traffic Volume (vph)	0	0	0	19	28	0
Future Volume (vph)	0	0	0	215	28	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.865			
Flt Protected					0.950	
Satd. Flow (prot)	0	1863	1611	0	1770	1863
Flt Permitted					0.950	
Satd. Flow (perm)	0	1863	1611	0	1770	1863
Link Speed (mph)		30	30		30	
Link Distance (ft)		98	839		286	
Travel Time (s)		2.2	19.1		6.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	234	30	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	0	234	0	30	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		0	0		36	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		10	10		10	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15			9	15	9
Sign Control		Free	Stop		Stop	
Intersection Summary						
51	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	ion 13.3%			IC	CU Level o	of Service A

PM Build LOS

	1	۲	×	4	¥	*
Lane Group	NBL	NBR	NET	NER	SWL	SWT
Lane Configurations	Y		† †			^
Traffic Volume (vph)	348	4	27	0	0	233
Future Volume (vph)	348	4	27	0	0	612
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	0.95	1.00	1.00	0.91
Frt	0.999	1.00	0.75	1.00	1.00	0.71
Flt Protected	0.953					
Satd. Flow (prot)	1773	0	3539	0	0	5085
Flt Permitted	0.953	0	3337	0	0	3003
Satd. Flow (perm)	1773	0	3539	0	0	5085
Right Turn on Red	1775	Yes	3337	Yes	0	3003
Satd. Flow (RTOR)	1	162		162		
Link Speed (mph)	30		30			30
Link Distance (ft)	765		397			221
Travel Time (s)	17.4	0.00	9.0	0.00	0.00	5.0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	378	4	29	0	0	665
Shared Lane Traffic (%)					_	
Lane Group Flow (vph)	382	0	29	0	0	665
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		6			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	10		10			10
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9		9	15	
Turn Type	Prot		NA			NA
Protected Phases	2		4			8
Permitted Phases						
Minimum Split (s)	22.5		22.5			22.5
Total Split (s)	22.5		22.5			22.5
Total Split (%)	50.0%		50.0%			50.0%
Maximum Green (s)	18.0		18.0			18.0
Yellow Time (s)	3.5		3.5			3.5
All-Red Time (s)	1.0		1.0			1.0
Lost Time Adjust (s)	0.0		0.0			0.0
Total Lost Time (s)	4.5		4.5			4.5
Lead/Lag	4.0		4.0			4.0
Lead-Lag Optimize?	7.0		7.0			7.0
Walk Time (s)	7.0		7.0			7.0
Flash Dont Walk (s)	11.0		11.0			11.0
Pedestrian Calls (#/hr)	5		5			5
Act Effct Green (s)	18.0		18.0			18.0
Actuated g/C Ratio	0.40		0.40			0.40
v/c Ratio	0.54		0.02			0.33
Control Delay	13.8		9.6			9.9
Queue Delay	0.0		0.0			0.0
Total Delay	13.8		9.6			9.9

06b PM BUILD DIA & Dist Ctr 1 R 9:29 am 04/05/2022

Lanes, Volumes, Timings 13: VA 286 NB Ramps

	* 1	۲	*	4	4	*
Lane Group	NBL	NBR	NET	NER	SWL	SWT
LOS	В		А			А
Approach Delay	13.8		9.6			9.9
Approach LOS	В		А			А
Queue Length 50th (ft)	71		4			41
Queue Length 95th (ft)	133		14			61
Internal Link Dist (ft)	685		317			141
Turn Bay Length (ft)						
Base Capacity (vph)	709		1415			2034
Starvation Cap Reductn	0		0			0
Spillback Cap Reductn	0		0			0
Storage Cap Reductn	0		0			0
Reduced v/c Ratio	0.54		0.02			0.33
Intersection Summary						
Area Type:	Other					
Cycle Length: 45						
Actuated Cycle Length: 4						
Offset: 0 (0%), Reference	d to phase 2:1	VBL and 6	5:, Start o	of Green		
Natural Cycle: 45						
Control Type: Pretimed						
Maximum v/c Ratio: 0.54						
Intersection Signal Delay:				In	tersectior	ILOS: B
Intersection Capacity Utili	zation 31.5%			IC	CU Level o	of Service
Analysis Period (min) 15						
Splits and Phases: 13:						
Spins and Phases. 13:						

22.5 s	≯ ⊘4
22.5 s	22.5 s
	¥ ø8
	22.5 s

06b PM BUILD DIA & Dist Ctr 1 R 9:29 am 04/05/2022

Lanes, Volumes, Timings 17: VA 286 SB Ramps

		×	2	*	×	ť	3	*	4	<u>í</u>	*	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ካካ	eî 👘	1	۳.		1		<u></u>	1	۲	<u></u>	
Traffic Volume (vph)	10	11	477	15	0	7	0	344	10	7	443	0
Future Volume (vph)	10	11	477	15	0	7	0	344	10	7	504	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.97	0.95	0.95	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt		0.857	0.850			0.850			0.850			
Flt Protected	0.950			0.950						0.950		
Satd. Flow (prot)	3433	1517	1504	1770	0	1583	0	3539	1583	1770	3539	0
Flt Permitted	0.950			0.572						0.530		
Satd. Flow (perm)	3433	1517	1504	1065	0	1583	0	3539	1583	987	3539	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		181	181			36			36			
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		872			347			301			374	
Travel Time (s)		19.8			7.9			6.8			8.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	11	12	518	16	0	8	0	374	11	8	548	0
Shared Lane Traffic (%)			49%									-
Lane Group Flow (vph)	11	266	264	16	0	8	0	374	11	8	548	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		24			24	- i gi i i		12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		10			10			10			10	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA	Perm	Perm		Perm		NA	Perm	Perm	NA	
Protected Phases		6						4			8	
Permitted Phases	6		6	2		2			4	8		
Minimum Split (s)	22.5	22.5	22.5	22.5		22.5		22.5	22.5	22.5	22.5	
Total Split (s)	22.5	22.5	22.5	22.5		22.5		22.5	22.5	22.5	22.5	
Total Split (%)	50.0%	50.0%	50.0%	50.0%		50.0%		50.0%	50.0%	50.0%	50.0%	
Maximum Green (s)	18.0	18.0	18.0	18.0		18.0		18.0	18.0	18.0	18.0	
Yellow Time (s)	3.5	3.5	3.5	3.5		3.5		3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0		1.0		1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5		4.5		4.5	4.5	4.5	4.5	
Lead/Lag												
Lead-Lag Optimize?												
Walk Time (s)	7.0	7.0	7.0	7.0		7.0		7.0	7.0	7.0	7.0	
Flash Dont Walk (s)	11.0	11.0	11.0	11.0		11.0		11.0	11.0	11.0	11.0	
Pedestrian Calls (#/hr)	5	5	5	5		5		5	5	5	5	
Act Effct Green (s)	18.0	18.0	18.0	18.0		18.0		18.0	18.0	18.0	18.0	
Actuated g/C Ratio	0.40	0.40	0.40	0.40		0.40		0.40	0.40	0.40	0.40	
v/c Ratio	0.01	0.37	0.37	0.04		0.01		0.26	0.02	0.02	0.39	
Control Delay	8.2	5.3	5.3	8.7		0.4		13.8	7.5	8.9	10.5	
Queue Delay	0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0	0.0	
Total Delay	8.2	5.3	5.3	8.7		0.4		13.8	7.5	8.9	10.5	

06b PM BUILD DIA & Dist Ctr 1 R 9:29 am 04/05/2022

Synchro 11 Report Page 3

Lanes, Volumes, Timings 17: VA 286 SB Ramps

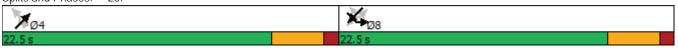
	-	\mathbf{x}	2	-	×	ť	3	×	~	4	*	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
LOS	А	А	А	А		А		В	А	А	В	
Approach Delay		5.3			5.9			13.6			10.5	
Approach LOS		А			А			В			В	
Queue Length 50th (ft)	1	13	13	2		0		54	0	1	55	
Queue Length 95th (ft)	4	51	50	11		1		92	m8	m4	100	
Internal Link Dist (ft)		792			267			221			294	
Turn Bay Length (ft)												
Base Capacity (vph)	1373	715	710	426		654		1415	654	394	1415	
Starvation Cap Reductn	0	0	0	0		0		0	0	0	0	
Spillback Cap Reductn	0	0	0	0		0		0	0	0	0	
Storage Cap Reductn	0	0	0	0		0		0	0	0	0	
Reduced v/c Ratio	0.01	0.37	0.37	0.04		0.01		0.26	0.02	0.02	0.39	
Intersection Summary												
51	Other											
Cycle Length: 45												
Actuated Cycle Length: 45												
Offset: 0 (0%), Referenced	to phase 2:	NWL and	6:SETL,	Start of G	Green							
Natural Cycle: 45												
Control Type: Pretimed												
Maximum v/c Ratio: 0.39												
Intersection Signal Delay: 9					tersectior							
Intersection Capacity Utiliza	ition 46.1%			IC	U Level	of Service	A					
Analysis Period (min) 15												
m Volume for 95th percen	itile queue i	s metereo	l by upstr	eam sign	al.							
Colita and Dhasas. 17.												
Splits and Phases: 17:												
Ø2 (R)						Ø4						

🔎 🖉 02 (R)	A Ø4
22.5 s	22.5 s
× Ø6 (R)	Ki_ø8
22.5 s	22.5 s

	-	\mathbf{r}	1	+	1	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	<u></u> ≜†}⊧			<u></u>		1	
Traffic Volume (vph)	40	20	0	359	47	35	
Future Volume (vph)	202	20	0	685	47	35	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	0.95	0.95	1.00	0.95	1.00	1.00	
Frt	0.986					0.865	
Flt Protected					0.950		
Satd. Flow (prot)	3490	0	0	3539	0	1611	
Flt Permitted					0.950		
Satd. Flow (perm)	3490	0	0	3539	0	1611	
Link Speed (mph)	30			30	30		
Link Distance (ft)	404			491	211		
Travel Time (s)	9.2			11.2	4.8		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	220	22	0	745	51	38	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	242	0	0	745	51	38	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Right	
Median Width(ft)	12			24	0		
Link Offset(ft)	0			6	0		
Crosswalk Width(ft)	10			10	10		
Two way Left Turn Lane							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)		9	15		15	9	
Sign Control	Free			Free	Stop		
Intersection Summary							
51	Other						
Control Type: Unsignalized							
Intersection Capacity Utilization	tion Err%			IC	CU Level	of Service	ЭН
Analysis Dariad (min) 15							

Lanes, Volumes, Timings 25: Rolling Road

	*	*	, st	>	2	3	×	*	6	*	×	
Lane Group	WBL	WBR	SEL2	SEL	SER	NEL	NET	NER	SWL	SWT	SWR	
Lane Configurations				ă,	1	5	† †	1		† †	1	
Traffic Volume (vph)	0	0	12	33	42	77	342	118	0	743	87	
Future Volume (vph)	0	0	12	33	42	77	342	118	0	799	92	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	0	0		0	0	250		0	0		0	
Storage Lanes	0	0		1	1	1		1	0		1	
Taper Length (ft)	100	-		100		100			100		-	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Frt					0.850			0.850			0.850	
Flt Protected				0.950		0.950						
Satd. Flow (prot)	0	0	0	1770	1583	1770	3539	1583	0	3539	1583	
Flt Permitted				0.950		0.222						
Satd. Flow (perm)	0	0	0	1770	1583	414	3539	1583	0	3539	1583	
Right Turn on Red	-	-	-		Yes			Yes	-		Yes	
Satd. Flow (RTOR)					46			128			100	
Link Speed (mph)	30			30	10		30	.20		30	100	
Link Distance (ft)	601			719			925			301		
Travel Time (s)	13.7			16.3			21.0			6.8		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	0	0	13	36	46	84	372	128	0	868	100	
Shared Lane Traffic (%)	Ŭ	Ŭ		00	10	0.	0.12	.20	Ŭ	000		
Lane Group Flow (vph)	0	0	0	49	46	84	372	128	0	868	100	
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right	
Median Width(ft)	0			12			12			12		
Link Offset(ft)	0			0			0			0		
Crosswalk Width(ft)	10			10			10			10		
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)	15	9	15	15	9	15		9	15		9	
Turn Type			D.Pm	Prot	Perm	Perm	NA	Perm		NA	Perm	
Protected Phases				8!			4			8!		
Permitted Phases			8!		8	4		4			8	
Minimum Split (s)			22.5	22.5	22.5	22.5	22.5	22.5		22.5	22.5	
Total Split (s)			22.5	22.5	22.5	22.5	22.5	22.5		22.5	22.5	
Total Split (%)			50.0%	50.0%	50.0%	50.0%	50.0%	50.0%		50.0%	50.0%	
Maximum Green (s)			18.0	18.0	18.0	18.0	18.0	18.0		18.0	18.0	
Yellow Time (s)			3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)			1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)				0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)				4.5	4.5	4.5	4.5	4.5		4.5	4.5	
Lead/Lag												
Lead-Lag Optimize?												
Walk Time (s)			7.0	7.0	7.0	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)			11.0	11.0	11.0	11.0	11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)			5	5	5	5	5	5		5	5	
Act Effct Green (s)			0	18.0	18.0	18.0	18.0	18.0		18.0	18.0	
Actuated g/C Ratio				0.40	0.40	0.40	0.40	0.40		0.40	0.40	
v/c Ratio				0.40	0.07	0.51	0.26	0.18		0.40	0.14	
				0.07	0.07	0.01	0.20	0.10		0.01	U. I T	

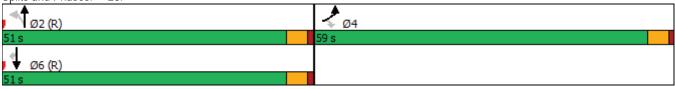

06b PM BUILD DIA & Dist Ctr 1 R 9:29 am 04/05/2022

Synchro 11 Report Page 6

Lanes, Volumes, Timings 25: Rolling Road

	×	*	4	\searrow	2	3	×	/	6	*	*	
Lane Group	WBL	WBR	SEL2	SEL	SER	NEL	NET	NER	SWL	SWT	SWR	
Control Delay				8.7	3.8	25.2	9.7	3.1		10.3	2.2	
Queue Delay				0.0	0.0	0.0	0.0	0.0		0.1	0.0	
Total Delay				8.7	3.8	25.2	9.7	3.1		10.3	2.2	
LOS				А	А	С	А	А		В	А	
Approach Delay				6.3			10.5			9.5		
Approach LOS				А			В			А		
Queue Length 50th (ft)				7	0	15	32	0		66	1	
Queue Length 95th (ft)				22	13	#65	54	22		96	14	
Internal Link Dist (ft)	521			639			845			221		
Turn Bay Length (ft)						250						
Base Capacity (vph)				708	660	165	1415	710		1415	693	
Starvation Cap Reductn				0	0	0	0	0		44	0	
Spillback Cap Reductn				0	0	0	0	0		0	0	
Storage Cap Reductn				0	0	0	0	0		0	0	
Reduced v/c Ratio				0.07	0.07	0.51	0.26	0.18		0.63	0.14	
Intersection Summary												
51	Other											
Cycle Length: 45												
Actuated Cycle Length: 45												
Offset: 0 (0%), Referenced to	phase 2:	and 6:, S	Start of Gr	een								
Vatural Cycle: 45												
Control Type: Pretimed												
Maximum v/c Ratio: 0.61	7			Lat								
Intersection Signal Delay: 9.7					ersection		٨					
Intersection Capacity Utilizati	011 40.2%			IC	U Level c	I Service	A					
Analysis Period (min) 15	vacada aa	nooitu ~		ha langar								
# 95th percentile volume expounds a percentile volume expounds a percentile volume expounds a percentile volume exponential			ieue may	be longer	•							
Queue shown is maximun												
Phase conflict between la	ne groups	•										
Splits and Phases: 25:												

Splits and Phases: 20



	≯	\mathbf{F}	-	1	Ļ	-
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	<u> </u>	1	<u>المال</u>		1	1
Traffic Volume (vph)	0	0	- 18	TT 31	TT 633	2
Future Volume (vph)	162	378	18	31	959	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	250	1700	1700	150
Storage Lanes	1	1	230			150
Taper Length (ft)	100	1	25			1
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	1.00
	1.00	0.850	1.00	0.95	0.95	0.850
Frt Elt Drotostad		0.850				0.850
Flt Protected	0.950	1500	0.950	2520	25.20	1500
Satd. Flow (prot)	1770	1583	1770	3539	3539	1583
Flt Permitted	0.950	1.200	0.217			1
Satd. Flow (perm)	1770	1583	404	3539	3539	1583
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		39				1
Link Speed (mph)	30			30	30	
Link Distance (ft)	755			451	920	
Travel Time (s)	17.2			10.3	20.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	176	411	20	34	1042	2
Shared Lane Traffic (%)						
Lane Group Flow (vph)	176	411	20	34	1042	2
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12	TayIn	LUI	24	6	Right
Link Offset(ft)	0			-6	6	
					0 10	
Crosswalk Width(ft)	10			10	IU	
Two way Left Turn Lane	4 00	4.00	1.00	4.00	4.00	4.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15			9
Number of Detectors	1	1	1	2	2	1
Detector Template	Left	Right	Left	Thru	Thru	Right
Leading Detector (ft)	20	20	20	100	100	20
Trailing Detector (ft)	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0
Detector 1 Size(ft)	20	20	20	6	6	20
Detector 1 Type	CI+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)	0.0	0.0	0.0	94	94	0.0
Detector 2 Size(ft)				94	94	
Detector 2 Type				CI+Ex	CI+Ex	
Detector 2 Channel				~ ~ ~	0.0	
Detector 2 Extend (s)		F	E C	0.0	0.0	
Turn Type	Prot	Perm	Perm	NA	NA	Perm
Protected Phases	4			2	6	
Permitted Phases		4	2			6

06b PM BUILD DIA & Dist Ctr 1 R 9:29 am 04/05/2022

	۶	\mathbf{r}	-	1	¥	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Detector Phase	4	4	2	2	6	6
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5
Total Split (s)	59.0	59.0	51.0	51.0	51.0	51.0
Total Split (%)	53.6%	53.6%	46.4%	46.4%	46.4%	46.4%
Maximum Green (s)	54.5	54.5	46.5	46.5	46.5	46.5
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	C-Max	C-Max	C-Max	C-Max
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	5	5	5	5	5	5
Act Effct Green (s)	33.6	33.6	67.4	67.4	67.4	67.4
Actuated g/C Ratio	0.31	0.31	07.4	07.4	07.4	07.4
v/c Ratio	0.31	0.81	0.01	0.01	0.01	0.01
Control Delay	29.3	43.3	13.1	11.1	14.0	10.5
Queue Delay	29.3	43.3	0.0	0.0	0.0	0.0
Total Delay	29.3	43.3	13.1	11.1	14.0	10.5
LOS	29.3 C	43.3 D	B	B	14.0 B	10.5 B
	39.1	D	D	ы 11.8	р 14.0	D
Approach Delay	39.1 D			11.8 B	14.0 B	
Approach LOS		244	5		в 197	0
Queue Length 50th (ft)	96			4		0
Queue Length 95th (ft)	130	309	22	14 271	325	4
Internal Link Dist (ft)	675		250	371	840	150
Turn Bay Length (ft)	07/	000	250	01/0	01/0	150
Base Capacity (vph)	876	803	247	2168	2168	970
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.20	0.51	0.08	0.02	0.48	0.00
Intersection Summary						
Area Type:	Other					
Cycle Length: 110						
Actuated Cycle Length: 110	0					
Offset: 0 (0%), Referenced		NBTL an	d 6:SBT,	Start of (Green	
Natural Cycle: 50			,			
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.81						
Intersection Signal Delay: 2	22.7			l	ntersectio	n LOS: C
Intersection Capacity Utiliz						of Service
Analysis Period (min) 15					2 20101	

Splits and Phases: 28:

	4	1	*	×	×	ŧ۷		
Lane Group	SBL	SBR	NEL	NET	SWT	SWR		
Lane Configurations		77	۳	ર્સ				
Traffic Volume (vph)	0	633	31	0	0	0		
Future Volume (vph)	0	959	193	0	0	0		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Util. Factor	1.00	0.88	0.95	0.95	1.00	1.00		
Frt		0.850						
Flt Protected			0.950	0.950				
Satd. Flow (prot)	0	2787	1681	1681	0	0		
Flt Permitted			0.950	0.950				
Satd. Flow (perm)	0	2787	1681	1681	0	0		
Link Speed (mph)	30			30	30			
Link Distance (ft)	227			920	549			
Travel Time (s)	5.2			20.9	12.5			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	0	1042	210	0	0	0		
Shared Lane Traffic (%)			50%					
Lane Group Flow (vph)	0	1042	105	105	0	0		
Enter Blocked Intersection	No	No	No	No	No	No		
Lane Alignment	Left	Right	Left	Left	Left	Right		
Median Width(ft)	12			36	36			
Link Offset(ft)	0			0	0			
Crosswalk Width(ft)	10			10	10			
Two way Left Turn Lane								
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Turning Speed (mph)	15	9	15			9		
Sign Control	Free			Free	Free			
Intersection Summary								
JI	Other							
Control Type: Unsignalized								
Intersection Capacity Utiliza	tion 25.5%			IC	CU Level o	of Service A	А	
Analysis Poriod (min) 15								

	_#	7	•	×	*	*	
Lane Group	EBL	EBR	NEL	NET	SWT	SWR	
Lane Configurations				<u></u>	<u></u>	1	
Traffic Volume (vph)	0	0	0	361	450	133	
Future Volume (vph)	0	0	0	361	511	451	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	1.00	
Frt						0.850	
Flt Protected							
Satd. Flow (prot)	0	0	0	3539	3539	1583	
Flt Permitted							
Satd. Flow (perm)	0	0	0	3539	3539	1583	
Link Speed (mph)	30			30	30		
Link Distance (ft)	818			374	654		
Travel Time (s)	18.6			8.5	14.9		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	0	0	0	392	555	490	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	0	0	0	392	555	490	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(ft)	12			12	12		
Link Offset(ft)	0			0	0		
Crosswalk Width(ft)	10			10	10		
Two way Left Turn Lane							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)	15	9	15			9	
Sign Control	Stop			Free	Free		
Intersection Summary							
51	Other						
Control Type: Unsignalized							
Intersection Capacity Utilization	tion 15.8%			IC	CU Level	of Service	Α
Analycic Dariad (min) 15							

F	۲	×	/	6	*	
WBL	WBR	NET	NER	SWL	SWT	
		^	1		<u> </u>	
0	0	27	355	0	581	
0	0	27	355	0	960	
1900	1900	1900	1900	1900	1900	
1.00	1.00	0.95	1.00	1.00	0.91	
			0.850			
0	0	3539	1583	0	5085	
0	0	3539	1583	0	5085	
30		30			30	
815		654			397	
18.5		14.9			9.0	
0.92	0.92	0.92	0.92	0.92	0.92	
0	0	29	386	0	1043	
0	0	29	386	0	1043	
No	No	No	No	No	No	
Left	Right	Left	Right	Left	Left	
0		12			12	
0		0			0	
10		10			10	
1.00	1.00	1.00	1.00	1.00	1.00	
15	9		9	15		
Stop		Free			Free	
ther						
on 31.5%			IC	U Level of	of Service	eА
	0 0 1900 1.00 0 0 0 30 815 18.5 0.92 0 0 0 0 0 0 0 0 0 0 0 0 0 10 1.00 15 5top	WBL WBR 0 0 0 0 1900 1900 1900 1900 1.00 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 1.00 15 9 Stop	WBL WBR NET 0 0 27 0 0 27 0 0 27 1900 1900 1900 1.00 1.00 0.95 0 0 3539 0 0 3539 0 0 3539 30 30 30 815 654 18.5 14.9 0.92 0.92 0.92 0 0 29 0 0 29 No No No Left Right Left 0 0 12 0 0 0 100 1.00 10 1.00 1.00 1.00 15 9 Stop Free	WBL WBR NET NER 0 0 27 355 0 0 27 355 1900 1900 1900 1900 1.00 1.00 0.95 1.00 1.00 1.00 0.95 1.00 0 0 3539 1583 0 0 3539 1583 0 0 3539 1583 30 30 30 30 815 654 18.5 14.9 0.92 0.92 0.92 0.92 0 0 29 386 0 0 29 386 0 0 29 386 0 0 12 0 0 0 12 0 0 0 1.00 1.00 15 9 9 9 Stop Free tett	WBL WBR NET NER SWL ↑↑ ↑↑ ↑↑ ↑↑ ↑↑ 0 0 27 355 0 0 0 27 355 0 1900 1900 1900 1900 1900 100 1.00 0.95 1.00 1.00 1.00 1.00 0.95 1.00 1.00 0 0 3539 1583 0 0 0 3539 1583 0 30 30 30 30 30 315 654 1 1 1 0.92 0.92 0.92 0.92 0.92 0 0 29 386 0 No No No No No No No No No No 1.00 1.00 1.00 1.00 1.00 15 9 9 15	WBL WBR NET NER SWL SWT 0 0 27 355 0 581 0 0 27 355 0 960 1900 1900 1900 1900 1900 1900 100 1900 1900 1900 1900 1900 1.00 1.00 0.95 1.00 1.00 0.91 0 0 3539 1583 0 5085 0 0 3539 1583 0 5085 30 30 30 30 30 815 654 397 386 0 1043 0 0 29 386 0 1043 0 0 29 386 0 1043 0 0 29 386 0 1043 0 0 29 386 0 1043 0 100 100

Lanes, Volumes, Timings 101: VA 286 NB Directional Ramp

	_#	\mathbf{P}	•	×	*	~	
Lane Group	EBL	EBR	NEL	NET	SWT	SWR	
Lane Configurations				<u></u>	ተተተ	1	
Traffic Volume (vph)	0	0	0	31	233	400	
Future Volume (vph)	0	0	0	31	612	725	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	0.95	0.91	1.00	
Frt						0.850	
Flt Protected							
Satd. Flow (prot)	0	0	0	3539	5085	1583	
Flt Permitted							
Satd. Flow (perm)	0	0	0	3539	5085	1583	
Link Speed (mph)	30			30	30		
Link Distance (ft)	1042			221	359		
Travel Time (s)	23.7			5.0	8.2		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	0	0	0	34	665	788	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	0	0	0	34	665	788	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(ft)	8			0	6		
Link Offset(ft)	0			0	0		
Crosswalk Width(ft)	10			10	10		
Two way Left Turn Lane							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)	15	9	15			9	
Sign Control	Free			Free	Free		
Intersection Summary							
Area Type:	Other						
Control Type: Unsignalized							
Intersection Capacity Utilizat	tion 28.1%			IC	U Level	of Service	Α
Analysis Poriod (min) 15							

	L.	¥	1	*	*	4
Lane Group	SBL	SBR	NWL	NWR	NEL	NER
Lane Configurations	<u> </u>	11	1111	1001	ኘኘ	1111
Traffic Volume (vph)	0	633	0	19	30	19
Future Volume (vph)	0	1337	0	19	30	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	001900	001900	500	1900	001900
Storage Lanes	1	2	1	1	2	1
Taper Length (ft)	25	Z	25	1	25	1
Lane Util. Factor	1.00	0.88	1.00	1.00	0.97	1.00
Frt	1.00	0.850	1.00	0.850	0.97	0.850
		0.850		0.850	0.050	0.850
Flt Protected	1040	2070	1040	1500	0.950	1500
Satd. Flow (prot)	1863	2787	1863	1583	3433	1583
Flt Permitted	10/0	2707	10/0	100	0.950	100
Satd. Flow (perm)	1863	2787	1863	1583	3433	1583
Right Turn on Red		Yes		Yes		Yes
Satd. Flow (RTOR)		1920		1007		21
Link Speed (mph)	30		30		30	
Link Distance (ft)	570		723		430	
Travel Time (s)	13.0		16.4		9.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	1453	0	21	33	21
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	1453	0	21	33	21
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Right
Median Width(ft)	30	5	32	5	32	5
Link Offset(ft)	30		0		0	
Crosswalk Width(ft)	10		10		10	
Two way Left Turn Lane	10		10		10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	9	1.00	9	1.00	9
Number of Detectors	0	9	0	9	0	9
Detector Template	Thru		Thru		Thru	Thru
		Thru		Thru		
Leading Detector (ft)	0	0	0	0	0	0
Trailing Detector (ft)	0	0	0	0	0	0
Turn Type	Prot	pt+ov	Prot	Perm	Prot	Perm
Protected Phases	5	56	4		6	
Permitted Phases				4		6
Detector Phase	5	56	4	4	6	6
Switch Phase						
Minimum Initial (s)	5.0		5.0	5.0	5.0	5.0
Minimum Split (s)	22.5		22.5	22.5	22.5	22.5
Total Split (s)	15.5		15.5	15.5	19.0	19.0
Total Split (%)	31.0%		31.0%	31.0%	38.0%	38.0%
Maximum Green (s)	11.0		11.0	11.0	14.5	14.5
Yellow Time (s)	3.5		3.5	3.5	3.5	3.5
All-Red Time (s)	1.0		1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5		4.5	4.5	4.5	4.5
Lead/Lag	Lead		т.Ј	т.Ј	Lag	
Leau/Lay	Leau				Lay	Lag

06b PM BUILD DIA & Dist Ctr 1 R 9:29 am 04/05/2022

Synchro 11 Report Page 15

	L.	¥	1	*	*	~
Lane Group	SBL	SBR	NWL	NWR	NEL	NER
Lead-Lag Optimize?	Yes				Yes	Yes
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
	lone		None	None	C-Max	C-Max
Walk Time (s)	7.0		7.0	7.0	7.0	7.0
	11.0		11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	0		0	0	0	0
Act Effct Green (s)		47.1		5.5	30.9	30.9
Actuated g/C Ratio		0.94		0.11	0.62	0.62
v/c Ratio		0.53		0.02	0.02	0.02
Control Delay		0.7		0.1	5.7	3.6
Queue Delay		0.0		0.0	0.0	0.0
Total Delay		0.7		0.1	5.7	3.6
LOS		А		А	А	А
Approach Delay	0.7		0.1		4.9	
Approach LOS	А		А		А	
Queue Length 50th (ft)		0		0	1	0
Queue Length 95th (ft)		0		0	8	9
Internal Link Dist (ft)	490		643		350	
Turn Bay Length (ft)				500		
Base Capacity (vph)		2709		1133	2121	986
Starvation Cap Reductn		0		0	0	0
Spillback Cap Reductn		0		0	0	0
Storage Cap Reductn		0		0	0	0
Reduced v/c Ratio		0.54		0.02	0.02	0.02
Intersection Summary						
Area Type: Other	r					
Cycle Length: 50						
Actuated Cycle Length: 50						
Offset: 0 (0%), Referenced to pha	ase 6:I	NEL, Star	t of Gree	n		
Natural Cycle: 70						
Control Type: Actuated-Coordina	ted					
Maximum v/c Ratio: 0.53						
Intersection Signal Delay: 0.9				Ir	ntersectio	n LOS: A
						of Comilar
Intersection Capacity Utilization 2	25.9%			[(CU Level	OI SELVICE
	25.9%			[(CU Level	of Service

Splits and Phases: 102:

Å Ø5	₩ \$ Ø6 (R)	₽ _04
15.5 s	19 s	15.5 s

	-	\mathbf{F}	∢	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u></u>			1	ኘካ	11011
Traffic Volume (vph)	31	0	0	406	227	29
Future Volume (vph)	193	0	0	732	227	29
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	1.00	1.00	0.95	0.97	1.00
Frt	0.75	1.00	1.00	0.75	0.77	0.850
Fit Protected					0.950	0.000
	2520	0	0	2520	3433	1583
Satd. Flow (prot)	3539	0	0	3539		1583
Flt Permitted	2520	0	0	2520	0.950	1500
Satd. Flow (perm)	3539	0	0	3539	3433	1583
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)						32
Link Speed (mph)	30			30	30	
Link Distance (ft)	923			533	500	
Travel Time (s)	21.0			12.1	11.4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	210	0	0	796	247	32
Shared Lane Traffic (%)						
Lane Group Flow (vph)	210	0	0	796	247	32
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12	····g···	2011	12	24	····g···
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane	10			10	10	
	1.00	1.00	1.00	1.00	1.00	1.00
Headway Factor	1.00			1.00		
Turning Speed (mph)	2	9	15	2	15	9
Number of Detectors	2			2	1	1
Detector Template	Thru			Thru	Left	Right
Leading Detector (ft)	100			100	20	20
Trailing Detector (ft)	0			0	0	0
Detector 1 Position(ft)	0			0	0	0
Detector 1 Size(ft)	6			6	20	20
Detector 1 Type	CI+Ex			CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0			0.0	0.0	0.0
Detector 1 Queue (s)	0.0			0.0	0.0	0.0
Detector 1 Delay (s)	0.0			0.0	0.0	0.0
Detector 2 Position(ft)	94			94	0.0	0.0
Detector 2 Size(ft)	6			6		
Detector 2 Type	CI+Ex			CI+Ex		
	UI+EX			∪I†ĖX		
Detector 2 Channel	0.0			0.0		
Detector 2 Extend (s)	0.0			0.0	Durt	Demo
Turn Type	NA			NA	Prot	Perm
Protected Phases	6			2	4	
Permitted Phases						4
Detector Phase	6			2	4	4
Switch Phase						
Minimum Initial (s)	5.0			5.0	5.0	5.0

06b PM BUILD DIA & Dist Ctr 1 R 9:29 am 04/05/2022

Lanes, Volumes, Timings 103: Parking Garage Exit

04/1	0/2022
0 1/ 1	012022

	-	\mathbf{Y}	4	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Minimum Split (s)	22.5	LBR		22.5	22.5	22.5
Total Split (s)	26.0			26.0	24.0	24.0
Total Split (%)	52.0%			52.0%	48.0%	48.0%
Maximum Green (s)	21.5			21.5	19.5	19.5
Yellow Time (s)	3.5			3.5	3.5	3.5
All-Red Time (s)	1.0			1.0	1.0	1.0
Lost Time Adjust (s)	0.0			0.0	0.0	0.0
Total Lost Time (s)	4.5			4.5	4.5	4.5
Lead/Lag	4.0			4.0	4.0	4.0
Lead-Lag Optimize? Vehicle Extension (s)	3.0			3.0	3.0	3.0
• • •						
	C-Max			C-Max	None	None
Walk Time (s)	7.0			7.0	7.0	7.0
Flash Dont Walk (s)	11.0			11.0	11.0	11.0
Pedestrian Calls (#/hr)	0			0	0	0
Act Effct Green (s)	32.1			32.1	8.9	8.9
Actuated g/C Ratio	0.64			0.64	0.18	0.18
v/c Ratio	0.09			0.35	0.40	0.10
Control Delay	3.9			5.0	19.8	7.9
Queue Delay	0.0			0.0	0.0	0.0
Total Delay	3.9			5.0	19.8	7.9
LOS	А			А	В	А
Approach Delay	3.9			5.0	18.4	
Approach LOS	А			А	В	
Queue Length 50th (ft)	9			44	33	0
Queue Length 95th (ft)	21			80	55	16
Internal Link Dist (ft)	843			453	420	
Turn Bay Length (ft)	010			100	120	
Base Capacity (vph)	2272			2272	1338	636
Starvation Cap Reductn	0			0	0	0.00
Spillback Cap Reductn	0			0	0	0
Storage Cap Reductin	0			0	0	0
Reduced v/c Ratio	0.09			0.35	0.18	0.05
Intersection Summary						
Area Type:	Other					
Cycle Length: 50						
Actuated Cycle Length: 50						
Offset: 0 (0%), Referenced		NBT and	6.EBT	Start of G	reen	
Natural Cycle: 45			5.201,			
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.40						
Intersection Signal Delay:	77			lr.	ntersectio	
Intersection Capacity Utiliz	201011 25.2%](JU Level	of Service
Analysis Period (min) 15						

Splits and Phases: 103:

← Ø2 (R)	▲ VØ4	
26 s	24 s	
, →Ø6 (R)		
26 s		

	-	\mathbf{r}	4	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	10-	LDR	<u></u>	***	<u> </u>	
Traffic Volume (vph)	60	0	0	406	0	20
Future Volume (vph)	222	0	0	732	0	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	1.00	0.95	1.00	1.00
Frt	0.75	0.75	1.00	0.75	1.00	0.850
Flt Protected						0.000
Satd. Flow (prot)	3539	0	1863	3539	1863	1583
Flt Permitted	3337	0	1003	3334	1003	1303
Satd. Flow (perm)	3539	0	1863	3539	1863	1583
Right Turn on Red	3337	Yes	1003	3337	1005	Yes
Satd. Flow (RTOR)		res				503
	20			20	20	003
Link Speed (mph)	30			30	30	
Link Distance (ft)	533			404	428	
Travel Time (s)	12.1	0.00	0.00	9.2	9.7	0.00
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	241	0	0	796	0	22
Shared Lane Traffic (%)						
Lane Group Flow (vph)	241	0	0	796	0	22
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	24			24	20	
Link Offset(ft)	-12			8	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15		15	9
Turn Type	NA		Perm	NA	Prot	Perm
Protected Phases	4			8	2	
Permitted Phases			8			2
Minimum Split (s)	22.5		22.5	22.5	22.5	22.5
Total Split (s)	22.5		22.5	22.5	22.5	22.5
Total Split (%)	50.0%		50.0%	50.0%	50.0%	50.0%
Maximum Green (s)	18.0		18.0	18.0	18.0	18.0
Yellow Time (s)	3.5		3.5	3.5	3.5	3.5
			3.5 1.0		3.5 1.0	
All-Red Time (s)	1.0			1.0		1.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5		4.5	4.5	4.5	4.5
Lead/Lag						
Lead-Lag Optimize?	_		_	_	_	_
Walk Time (s)	7.0		7.0	7.0	7.0	7.0
Flash Dont Walk (s)	11.0		11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	0		0	0	0	0
Act Effct Green (s)	18.0			18.0		18.0
Actuated g/C Ratio	0.40			0.40		0.40
v/c Ratio	0.17			0.56		0.02
Control Delay	9.1			12.4		0.1
Queue Delay	0.0			0.0		0.0
Total Delay	9.1			12.4		0.1
	7.1			12.7		0.1

06b PM BUILD DIA & Dist Ctr 1 R 9:29 am 04/05/2022

Synchro 11 Report Page 19

	-	$\mathbf{\hat{z}}$	4	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
LOS	А			В		А
Approach Delay	9.1			12.4	0.1	
Approach LOS	А			В	А	
Queue Length 50th (ft)	20			78		0
Queue Length 95th (ft)	36			121		0
Internal Link Dist (ft)	453			324	348	
Turn Bay Length (ft)						
Base Capacity (vph)	1415			1415		935
Starvation Cap Reductn	0			0		0
Spillback Cap Reductn	0			0		0
Storage Cap Reductn	0			0		0
Reduced v/c Ratio	0.17			0.56		0.02
Intersection Summary						
Area Type:	Other					
Cycle Length: 45						
Actuated Cycle Length: 45						
Offset: 0 (0%), Referenced	d to phase 2:1	VBL and	6:, Start o	of Green		
Natural Cycle: 45						
Control Type: Pretimed						
Maximum v/c Ratio: 0.56						
Intersection Signal Delay:					tersection	
Intersection Capacity Utiliz	zation 15.8%			IC	U Level c	of Service A
Analysis Period (min) 15						

Splits and Phases: 104:

• 1 Ø2 (R)	→ Ø4
22.5 s	22.5 s
	₩ Ø8
	22.5 s

	-	>	•	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	† †	1	۲	† †	۲Y	
Traffic Volume (vph)	71	4	57	92	267	670
Future Volume (vph)	233	4	57	92	593	800
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	1.00	1.00	0.95	0.97	0.95
Frt	0.70	0.850	1.00	0.70	0.914	0.70
Flt Protected		0.000	0.950		0.979	
Satd. Flow (prot)	3539	1583	1770	3539	3234	0
Flt Permitted	0007	1000	0.950	0007	0.979	Ū
Satd. Flow (perm)	3539	1583	1770	3539	3234	0
Right Turn on Red	5557	Yes	1770	3337	5254	Yes
Satd. Flow (RTOR)		4			577	162
· · · · ·	30	4		30	30	
Link Speed (mph)				30 971		
Link Distance (ft)	491				1149	
Travel Time (s)	11.2	0.00	0.00	22.1	26.1	0.00
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	253	4	62	100	645	870
Shared Lane Traffic (%)						
Lane Group Flow (vph)	253	4	62	100	1515	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	24			24	24	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15		15	9
Number of Detectors	2	1	1	2	1	
Detector Template	Thru	Right	Left	Thru	Left	
Leading Detector (ft)	100	20	20	100	20	
Trailing Detector (ft)	0	0	0	0	0	
Detector 1 Position(ft)	0	0	0	0	0	
Detector 1 Size(ft)	6	20	20	6	20	
Detector 1 Type	CI+Ex				CI+Ex	
Detector 1 Channel	CI+EX		UI+CX	UI+CX	UI+ĽX	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
		0.0		0.0		
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(ft)	94			94		
Detector 2 Size(ft)	6			6		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0	_		0.0		
Turn Type	NA	Perm	Prot	NA	Prot	
Protected Phases	6		5	2	4	
Permitted Phases		6				
Detector Phase	6	6	5	2	4	
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	
- \-/						

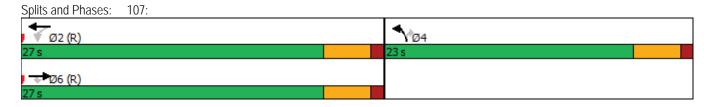
06b PM BUILD DIA & Dist Ctr 1 R 9:29 am 04/05/2022

	-	\mathbf{i}	4	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Minimum Split (s)	20.0	20.0	9.5	22.5	15.0	
Total Split (s)	21.0	21.0	10.0	31.0	19.0	
Total Split (%)	42.0%	42.0%	20.0%	62.0%	38.0%	
Maximum Green (s)	16.5	16.5	5.5	26.5	14.5	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	
Lead/Lag	Lag	Lag	Lead	1.0	1.0	
Lead-Lag Optimize?	Lug	Lay	Load			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	C-Max	C-Max	None	C-Max	None	
Walk Time (s)	7.0	7.0	NOTIC		NUTIC	
Flash Dont Walk (s)	11.0	11.0				
Pedestrian Calls (#/hr)	0	0				
Act Effct Green (s)	20.5	20.5	5.5	26.5	14.5	
Actuated g/C Ratio	0.41	0.41	0.11	0.53	0.29	
v/c Ratio	0.41	0.41	0.11	0.05	1.12	
Control Delay	11.3	8.2	26.9	2.8	81.4	
Queue Delay	0.0	0.2	0.0	0.0	01.4	
Total Delay	11.3	8.2	26.9	2.8	81.4	
LOS	B	o.z	20.9 C	2.0 A	61.4 F	
Approach Delay	11.3	Л	U	12.1	81.4	
Approach LOS	B			B	61.4 F	
Queue Length 50th (ft)	27	0	18	5	~206	
Queue Length 95th (ft)	48	5	39	4	#322	
Internal Link Dist (ft)	40	J	37	891	#322 1069	
Turn Bay Length (ft)	411			071	1007	
Base Capacity (vph)	1450	651	194	1875	1347	
Starvation Cap Reductn	0	001	0	0	0	
Spillback Cap Reductin	0	0	0	0	0	
Storage Cap Reductin	0	0	0	0	0	
Reduced v/c Ratio	0.17	0.01	0.32	0.05	1.12	
	0.17	0.01	0.32	0.05	1.12	
Intersection Summary						
Area Type:	Other					
Cycle Length: 50						
Actuated Cycle Length: 50						
Offset: 0 (0%), Referenced	to phase 2	:WBT and	6:EBT.	Start of G	reen	
Natural Cycle: 60						
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 1.12						
Intersection Signal Delay: 6	56.3			Ir	ntersectior	LOS: E
Intersection Capacity Utiliz)				of Service A
Analysis Period (min) 15					201010	
 Volume exceeds capac 	ity, queue i	s theoreti	cally infin	ite.		
Queue shown is maxim						
# 95th percentile volume		3	Jeue may	be longe	r.	
Queue shown is maxim			2040 may	Johnge		
		5 0,000				

Lanes, Volumes, Timings 105: GeoInt Drive

Lanes, Volumes, Timings 106: FBNA CDC Entrance

	≯	-	\mathbf{F}	-	-	*	1	1	1	1	÷.	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		† †			^			•			•	
Traffic Volume (vph)	0	741	0	2	119	2	27	0	17	0	0	4
Future Volume (vph)	0	1033	0	2	119	2	27	0	17	0	0	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	0.95	1.00	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt					0.998			0.948			0.865	
Flt Protected					0.999			0.970				
Satd. Flow (prot)	0	3539	0	0	3529	0	0	1713	0	0	1611	0
Flt Permitted					0.999			0.970				
Satd. Flow (perm)	0	3539	0	0	3529	0	0	1713	0	0	1611	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		971			260			262			305	
Travel Time (s)		22.1			5.9			6.0			6.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	1123	0	2	129	2	29	0	18	0	0	4
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1123	0	0	133	0	0	47	0	0	4	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		16			16			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		10			10			10			10	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
51)ther											
Control Type: Unsignalized												
Intersection Capacity Utilizati	on 36.4%			IC	CU Level of	of Service	A					


	-	\mathbf{r}	4	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u></u>			↑ ↑		
Traffic Volume (vph)	465	293	4	N T 122	0	19
Future Volume (vph)	757	293	4	122	0	117
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	14	1300	1300	1300	1900
Lane Util. Factor	0.95	1.00	0.95	0.95	1.00	1.00
Frt	0.90	0.850	0.95	0.95	1.00	0.850
Fit Protected		0.000		0.999		0.600
	3539	1689	0	3536	1863	1583
Satd. Flow (prot) Flt Permitted	3039	1009	0	0.941	1803	1003
	25.20	1/00	0		10/0	100
Satd. Flow (perm)	3539	1689	0	3330	1863	1583
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		318		0.0	0.0	96
Link Speed (mph)	30			30	30	
Link Distance (ft)	777			738	307	
Travel Time (s)	17.7			16.8	7.0	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	823	318	4	133	0	127
Shared Lane Traffic (%)						
Lane Group Flow (vph)	823	318	0	137	0	127
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	R NA	Left	Left	Left	Right
Median Width(ft)	16			16	36	5
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane	. 3					
Headway Factor	1.00	0.92	1.00	1.00	1.00	1.00
Turning Speed (mph)		15	15		15	9
Number of Detectors	2	1	13	2	1	1
Detector Template	Thru	Right	Left	Thru	Left	Right
Leading Detector (ft)	100	20	20	100	20	20
Trailing Detector (ft)	0	20	20	0	20	20
	0	0				0
Detector 1 Position(ft)			0	0	0	
Detector 1 Size(ft)	6	20	20	6	20	20
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)	94			94		
Detector 2 Size(ft)	6			6		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA	Perm	Perm	NA	Prot	Perm
Protected Phases	6			2	4	
Permitted Phases	Ŭ	6	2	_		4
Detector Phase	6	6	2	2	4	4
Switch Phase	0	0	2	2	4	4
Switch Flidse						

06b PM BUILD DIA & Dist Ctr 1 R 9:29 am 04/05/2022

	-	\mathbf{i}	4	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5
Total Split (s)	27.0	27.0	27.0	27.0	23.0	23.0
Total Split (%)	54.0%	54.0%	54.0%	54.0%	46.0%	46.0%
Maximum Green (s)	22.5	22.5	22.5	22.5	18.5	18.5
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5		4.5	4.5	4.5
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	C-Max	C-Max	C-Max	C-Max	None	None
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	0	0	0	0	0	0
Act Effct Green (s)	36.7	36.7	5	36.7	Ū	7.2
Actuated g/C Ratio	0.73	0.73		0.73		0.14
v/c Ratio	0.32	0.24		0.06		0.41
Control Delay	5.0	2.1		2.8		11.6
Queue Delay	0.0	0.0		0.0		0.0
Total Delay	5.0	2.1		2.8		11.6
LOS	A	A		2.0 A		B
Approach Delay	4.2	7.		2.8	11.6	D
Approach LOS	A			Α	B	
Queue Length 50th (ft)	53	6		5	D	8
Queue Length 95th (ft)	m57	m7		11		42
Internal Link Dist (ft)	697	1117		658	227	72
Turn Bay Length (ft)	077			000	221	
Base Capacity (vph)	2600	1325		2446		646
Starvation Cap Reductn	0	0		2440		0+0
Spillback Cap Reductn	0	0		0		0
Storage Cap Reductn	0	0		0		0
Reduced v/c Ratio	0.32	0.24		0.06		0.20
	0.32	0.24		0.00		0.20
Intersection Summary	Other					
Area Type:	Other					
Cycle Length: 50						
Actuated Cycle Length: 50		MOTI			-	
Offset: 0 (0%), Referenced	to phase 2	:WBTL ai	10 6:EBT,	Start of (Jreen	
Natural Cycle: 45						
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.41	. 7					
Intersection Signal Delay: 4					ntersection	
Intersection Capacity Utiliza	ation 29.8%)](CU Level	of Service
Analysis Period (min) 15						
m Volume for 95th percei	ntile queue	is metere	ed by upst	ream sigr	nal.	

m Volume for 95th percentile queue is metered by upstream signal.

Lanes, Volumes, Timings 107: GeoInt Drive

	≯	\mathbf{r}	1	†	Ļ	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	٦Y		<u>الالال</u>	† †	^	1
Traffic Volume (vph)	470	115	40	1170	922	85
Future Volume (vph)	746	229	40	1170	922	85
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.97	0.95	1.00	0.95	0.95	1.00
Frt	0.965	0.75	1.00	0.75	0.75	0.850
Flt Protected	0.963		0.950			0.000
Satd. Flow (prot)	3358	0	1770	3539	3539	1583
Flt Permitted	0.963	0	0.200	0007	5557	1303
Satd. Flow (perm)	3358	0	373	3539	3539	1583
Right Turn on Red	3330	Yes	313	2024	2028	Yes
Satd. Flow (RTOR)	91	162				res 92
				20	20	92
Link Speed (mph)	30			30	30	
Link Distance (ft)	738			727	965	
Travel Time (s)	16.8			16.5	21.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	811	249	43	1272	1002	92
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1060	0	43	1272	1002	92
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	36	Ŭ		12	12	Ŭ
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15			9
Turn Type	Prot	,	pm+pt	NA	NA	Perm
Protected Phases	4		pini+pi 5	2	6	1 GIII
Permitted Phases	4		2	2	U	6
Minimum Split (s)	22.5		9.5	22.5	22.5	22.5
	22.5		9.5 8.5	22.5	22.5	22.5
Total Split (s)						
Total Split (%)	43.0%		17.0%	57.0%	40.0%	40.0%
Maximum Green (s)	17.0		4.0	24.0	15.5	15.5
Yellow Time (s)	3.5		3.5	3.5	3.5	3.5
All-Red Time (s)	1.0		1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5		4.5	4.5	4.5	4.5
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Walk Time (s)	7.0			7.0	7.0	7.0
Flash Dont Walk (s)	11.0			11.0	11.0	11.0
Pedestrian Calls (#/hr)	0			0	0	0
Act Effct Green (s)	17.0		24.0	24.0	15.5	15.5
Actuated g/C Ratio	0.34		0.48	0.48	0.31	0.31
v/c Ratio	0.88		0.40	0.40	0.91	0.17
Control Delay	24.9		8.2	14.0	32.0	4.6
3						
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	24.9		8.2	14.0	32.0	4.6

06b PM BUILD DIA & Dist Ctr 1 R 9:29 am 04/05/2022

	≯	\mathbf{Y}	1	1	÷.	1	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
LOS	С		А	В	С	А	
Approach Delay	24.9			13.8	29.7		
Approach LOS	С			В	С		
Queue Length 50th (ft)	141		6	145	145	0	
Queue Length 95th (ft)	#234		18	212	#253	24	
Internal Link Dist (ft)	658			647	885		
Turn Bay Length (ft)							
Base Capacity (vph)	1201		290	1698	1097	554	
Starvation Cap Reductn	0		0	0	0	0	
Spillback Cap Reductn	0		0	0	0	0	
Storage Cap Reductn	0		0	0	0	0	
Reduced v/c Ratio	0.88		0.15	0.75	0.91	0.17	
Intersection Summary							
Area Type:	Other						
Cycle Length: 50							
Actuated Cycle Length: 50							
Offset: 0 (0%), Referenced	to phase 2:1	VBTL and	16:SBT, 1	Start of G	reen, Mas	ster Inters	ection
Natural Cycle: 60							
Control Type: Pretimed							
Maximum v/c Ratio: 0.91							
Intersection Signal Delay: 2					tersection		
Intersection Capacity Utiliza	ation 57.8%			IC	U Level c	of Service	В
Analysis Period (min) 15							
# 95th percentile volume	exceeds cap	bacity, qu	eue may	be longer	ŕ.		
Queue shown is maximu	um after two	cycles.					
Splits and Phases: 108:							

1 Ø2 (R)	•	≯ _{Ø4}	
28.5 s		21.5 s	
▲ Ø5	● ♥ Ø6 (R)		
8.5 s	20 s		

	1	۴	ų,	÷.	Ð	*
Lane Group	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations	ef 👘			†		
Traffic Volume (vph)	19	0	361	0	0	0
Future Volume (vph)	117	98	361	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.938					
Flt Protected				0.950		
Satd. Flow (prot)	1747	0	0	1770	0	0
Flt Permitted				0.950		
Satd. Flow (perm)	1747	0	0	1770	0	0
Link Speed (mph)	30			30	30	
Link Distance (ft)	1082			1015	590	
Travel Time (s)	24.6			23.1	13.4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	127	107	392	0	0	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	234	0	0	392	0	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	0			0	0	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	10			10	10	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15		15	9
Sign Control	Free			Free	Stop	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 30.0%			IC	CU Level o	of Service
Analysis Poriod (min) 15						

	-	\mathbf{r}	-	-	1	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	•			•	- Y		
Traffic Volume (vph)	0	0	0	0	0	19	
Future Volume (vph)	196	0	0	0	0	19	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt					0.865		
Flt Protected							
Satd. Flow (prot)	1863	0	0	1863	1611	0	
Flt Permitted							
Satd. Flow (perm)	1863	0	0	1863	1611	0	
Link Speed (mph)	30			30	30		
Link Distance (ft)	839			634	538		
Travel Time (s)	19.1			14.4	12.2		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	213	0	0	0	0	21	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	213	0	0	0	21	0	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(ft)	0			0	12		
Link Offset(ft)	0			0	0		
Crosswalk Width(ft)	10			10	10		
Two way Left Turn Lane							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)		9	15		15	9	
Sign Control	Free			Free	Stop		
Intersection Summary							
Area Type:	Other						
Control Type: Unsignalized							
Intersection Capacity Utilization	tion 13.3%			IC	CU Level o	of Service	Α
Analysis Dariad (min) 15							

	≯	-	-	. 🔨	1	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्भ	et 🗧		۳.	1
Traffic Volume (vph)	0	0	0	0	0	0
Future Volume (vph)	0	0	0	0	196	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt						
Flt Protected					0.950	
Satd. Flow (prot)	0	1863	1863	0	1770	1863
Flt Permitted					0.950	
Satd. Flow (perm)	0	1863	1863	0	1770	1863
Link Speed (mph)		30	30		30	
Link Distance (ft)		98	839		286	
Travel Time (s)		2.2	19.1		6.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	0	213	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	0	0	0	213	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		0	0		36	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		10	10		10	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15			9	15	9
Sign Control		Free	Stop		Stop	
Intersection Summary						
51	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	ion 13.3%			IC	CU Level	of Service

HDR Tehama JV 1600 Genessee St Ste 754

Kansas City, MO 64102-1064

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX I – NOISE STUDY

Draft

Noise Technical Report

Fort Belvoir North Area (FBNA) Distribution Center

Springfield, Virginia

Contract No. W912DR-20-D-0010 Task Order W912DR22F0048

May 9, 2022

This page intentionally left blank.

Contents

1	Introd	luction	. 1
	1.1	Noise Concepts	. 1
2	Affec	ted Environment	. 2
	2.1	Noise Study Area	. 2
	2.2	Applicable Noise Regulations	. 4
	2.3	Existing Noise Levels	. 5
3	Envir	onmental Consequences	. 7
	3.1	Noise Analysis Approach	. 7
		3.1.1 Noise Analysis Approach for Proposed Action Construction3.1.2 Noise Analysis Approach for Proposed Action Operations	
	3.2	Proposed Action Analysis	11
		 3.2.1 Analysis of Proposed Action Construction	
	3.3	No Action Alternative Analysis	15
4	Mitiga	ation Measures	15
	4.1	Mitigation Measures for Construction	15
	4.2	Mitigation Measures for Operations	16
5	Acror	nyms and Abbreviations	16
6	Refe	ences	17

Tables

Fable 1-1. Common Sources of Noise	. 1
Fairfax County Maximum Sound Levels	. 4
Fable 2-2. Noise Limits for Noise Zones	. 5
Fable 2-3. Noise Measurement Results	. 6
Fable 3-1. Projected Traffic Volumes for Proposed Action	. 8
Fable 3-2. Modeled Stationary Source Sound Power Levels	. 9
Fable 3-3. Modeled Heights	11
Fable 3-4. Model Parameters	11
Fable 3-5. Calculated Construction Noise Levels Image: Construction State	13
Fable 3-6. Noise Model Results for Typical Operations	14

Figures

Figure 2-1. Noise Study Area	3
Figure 2-2. Measured Hourly Noise Levels	6
Figure 3-1. Noise Model Features	10

This page intentionally left blank.

1 Introduction

Fort Belvoir proposes to construct and operate a new Distribution Center at the Fort Belvoir North Area (FBNA) in Springfield, Virginia. FBNA currently hosts the National Geospatial-Intelligence Agency (NGA) headquarters and associated support facilities. The Proposed Action would construct a high bay warehouse, a two-story administrative building, a truck maintenance/refueling building, covered/enclosed storage buildings, an entry control facility, and enhanced site security measures.

HDR performed a noise analysis for the Proposed Action and the No Action Alternative. This report details the affected noise environment and the evaluation of environmental consequences related to noise.

1.1 Noise Concepts

Noise is generally defined as unwanted sound. Noise may be continuous, intermittent, or impulsive. An impulsive sound (or impulse sound) generally lasts for no more than one second, such as sound from firearms, pile drivers, or blasting. Human response to noise varies depending on the type of the noise, distance from the noise source, sensitivity, and time of day.

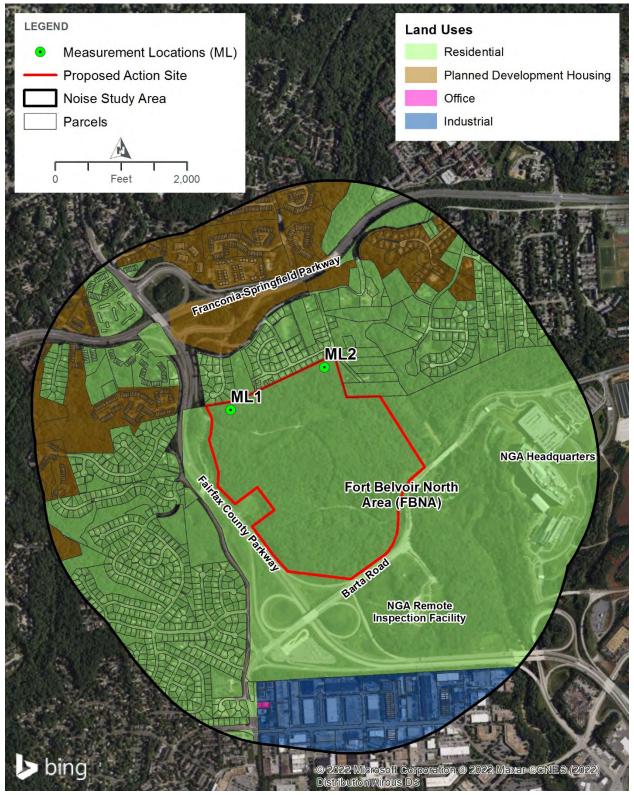
The decibel (dB) is a unit of measurement for noise levels and uses a logarithmic scale. To better match the sensitivity of the human ear, noise levels are typically A-weighted (dBA) to deemphasize low-frequency and very high-frequency sound. For low-frequency sounds such as artillery fire, noise levels are often C-weighted (dBC) to evaluate the presence of low-frequency sound. Table 1-1 contains average sound levels for some common noise sources.

Sound Source	Average Sound Level (dB)
Soft whisper	30
Refrigerator hum	40
Normal conversation, air conditioner	60
Washing machine, dishwasher	70
City traffic (inside the car), gas-powered lawnmowers, and leaf blowers	80 - 85
Motorcycle	95

Source: Centers for Disease Control and Prevention (CDC), 2019

Because of the logarithmic scale, noise levels cannot be simply added or subtracted. If sound energy is doubled, the noise level only increases by 3 dB. However, a doubling of sound energy is not perceived by humans as a doubling of loudness. A 3-dB change is generally perceived as a just noticeable difference, a 5-dB change is generally perceived as twice as loud or half as loud.

Environmental noise levels are often expressed over a specified period. The equivalentaverage sound level (LEQ) represents an average sound level in decibels of a given event or period of time (typically one hour). The day-night average sound level (DNL) represents a 24-hour LEQ with a 10-dBA penalty applied to nighttime hours. Daytime is defined as 7:00 a.m. to 10:00 p.m., and nighttime as 10:00 p.m. to 7:00 a.m.


2 Affected Environment

HDR evaluated the affected environment by defining a noise study area, reviewing applicable noise regulations, and documenting existing noise levels for the Proposed Action Site.

2.1 Noise Study Area

Figure 2-1, below, shows the Proposed Action Site, the noise study area, and the land uses within that area. The noise study area is defined as the area within one half mile of the Proposed Action Site. The nearest noise-sensitive receptors (NSR) to the Proposed Action Site include residences to the north and to the west, outside the FBNA property boundary. NSRs within the FBNA boundary include the existing NGA headquarters, located east of the Proposed Action Site, and the existing NGA remote inspection facility, located to the south.

The Proposed Action Site is separated from areas to the west by Fairfax County Parkway and areas to the south by Barta Road. The major thoroughfare of Interstate-95 (I-95) is located approximately 1.25 miles to the east of the Proposed Action Site. Currently, the major noise source in the project vicinity is vehicular traffic on Fairfax County Parkway, Barta Road, Franconia-Springfield Parkway, and I-95. Davison Army Airfield is located approximately 2.5 miles to the south of the Proposed Action Site.

Figure 2-1. Noise Study Area

Note: Figure uses computer-aided design (CAD) and geographic information system (GIS) data from the U.S. Army Corps of Engineers (USACE) and Fairfax County

2.2 Applicable Noise Regulations

Department of Defense (DoD) Instruction 4715.13 instructs facilities to minimize effects on the environment from military noise (DoD, 2020). The Noise Control Act of 1972 (42 United States Code [USC] §4901, et seq.) directs federal agencies to comply with applicable federal, state, interstate, and local noise control regulations. The applicable local noise control regulation is the Fairfax County noise ordinance (Chapter 108.1), which includes quantitative noise limits that apply at the property boundary of the sound source or at any point within any other property affected by the sound (County of Fairfax, 2021). Table 2-1 summarizes the Fairfax County maximum sound levels, which include limits for continuous sound sources (e.g., an air handling unit) and impulse sound sources (e.g., a firearm).

Table 2-1. Fairfax County Maximum Sound Levels

Use and Zoning District Classification	Time of Day	Maximum Continuous Sound Level (dBA)	Maximum Impulse Sound Level (dBA)
Residential Areas in Residential Districts	7 a.m. to 10 p.m.	60	100
Residential Areas in Residential Districts	10 p.m. to 7 a.m.	55	80
Non-Residential Areas in Residential Districts	All	60	100
Mixed Use Area	7 a.m. to 10 p.m.	65	100
Mixed Use Area	10 p.m. to 7 a.m.	60	80
Commercial Districts	All	65	100
Industrial Districts	7 a.m. to 10 p.m.	72	120
Industrial Districts	10 p.m. to 7 a.m.	65	100

Source: County of Fairfax, 2021 (Chapter 108.1)

Section 108.1-4-1 of the Fairfax County noise ordinance contains some specific prohibitions relevant to the Proposed Action:

- Construction, repair, maintenance, remodeling, demolition, grading, or other improvement of real property is prohibited outdoors between the hours of 9:00 p.m. and 7:00 a.m. from Sunday through Thursday and between the hours of 9:00 p.m. and 9:00 a.m. on Fridays, Saturdays, and the day before a federal holiday.
- Loading or unloading trucks outdoors within 100 yards of a residential dwelling is prohibited between the hours of 9:00 p.m. and 6:00 a.m.

Section 108.1-5-1 of the Fairfax County noise ordinance contains some specific exceptions relevant to the Proposed Action:

- Emergency work is exempt from the provisions of Chapter 108.1.
- Motor vehicles on road right-of-way are exempt from the provisions of Chapter 108.1.
- Construction, repair, maintenance, remodeling, demolition, grading, or other improvement of real property is exempt from the provisions of Chapter 108.1 except that such activity shall not generate noise levels exceeding 90 dBA in residential

areas and shall not begin before 9:00 a.m. on Saturdays, Sundays, and federal holidays.

 Back-up generators are exempt from the provisions of Chapter 108.1 during power outages from storms or other emergencies. Routine testing and maintenance of back-up generators are exempt from the provisions of Chapter 108.1 between the hours of 7:00 a.m. and 9:00 p.m., and are prohibited from occurring at other hours. Additionally, the duration of routine testing and maintenance events shall not exceed two consecutive or non-consecutive hours in any one day.

Section 14-4 of Army Regulation 200-1 defines noise zones for the determination of compatible land use (U.S. Army, 2007). The DNL is the primary metric for military zones, and is typically assessed and averaged over a period of 250 days for Active Army Installations and 104 days for Army Reserve and National Guard Installations. Single event noise metrics are used for small arms and large caliber weapons noise. The metric PK 15(met) is the peak noise level expected to be exceeded by 15 percent of all events that might occur, and does not include a frequency weighting. Table 2-2 defines the noise zones and their associated noise levels.

Noise Zone	DNL Limit for Aviation Sources (dBA)	DNL Limit for Impulsive Sources (dBC)	PK 15(met) Limit for Small Arms (dB)
LUPZ (Land Use Planning Zone)	60 - 65	57 – 62	N/A
T	< 65	< 62	< 87
П	65 – 75	62 - 70	87 – 104
III	> 75	> 70	> 104

Table	2-2.	Noise	Limits	for	Noise	Zones
-------	------	-------	--------	-----	-------	-------

Source: U.S. Army, 2007

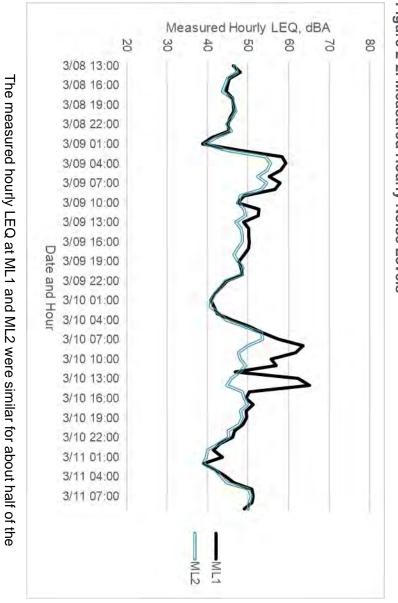
2.3 Existing Noise Levels

The nearest airfields are Davison Army Airfield, located approximately 2.5 miles to the south of the Proposed Action Site; Ronald Reagan Washington National Airport, located approximately 10.5 miles to the northeast; and Dulles International Airport, located approximately 16.5 miles to the northwest. The noise associated with airfields is generally reported to the public with maps showing the areas anticipated to experience aircraft overflight noise levels of 65 dBA DNL or more. The Proposed Action Site falls outside of these 65 dBA DNL areas for the nearest airfields; therefore, aircraft-related noise is anticipated to be less than 65 dBA DNL and existing noise levels are anticipated to be driven by other sources.

HDR measured outdoor noise levels from March 8 to 11, 2022, at two locations on the north end of the Proposed Action Site to document existing noise conditions. Measurement Location (ML) 1 is in the northwest corner of the Proposed Action Site and is representative of residential NSRs north of the site that are closer to Fairfax County Parkway (see Figure 2-1). ML2 is in the northeast corner of the Proposed Action Site and is representative of residential NSRs north of the site that are further from Fairfax County Parkway. HDR followed measurement guidelines from the American National

digital sound level meters and a Type 1 handheld calibrator to perform the positioned away from reflecting surfaces. measurements. The microphones were protected using wind screens and were "Measurement of Sound Pressure Levels in Air" (ANSI/ASA, 2010). HDR used Type 1 Standards Institute (ANSI) and the Acoustical Society of America (ASA) standard S1.13.

Table 2-3 summarizes the existing noise levels at ML1 and ML2.


Table 2-3.
Noise
Measurement
Results

Measurement Location	Measurement Equivalent- Location Level (LEQ) (dBA) MI 1 54	E C C C C C C C C C C C C C C C C C C C	Range of Measured hourly LEQ at Night (dBA)	Measured Overall DNL (dBA)
ML1	54	45 - 65	39 - 59	58
ML2	49	44 - 55	39 - 56	55

between the two locations. With reference to Table 2-2, the site would be classified as 65 dBA at both locations. Noise Zone I because the measured DNL was below the aviation noise DNL threshold of Fairfax County Parkway. The measured noise levels during quieter periods were similar ML1 was generally louder than ML2, which is to be expected for the location closer to

Figure 2-2 illustrates the measured hourly LEQ at ML1 and ML2

6 | May 9, 2022

during the day when there is more noise from transportation sources, and lower noise ML1. Noise levels in residential areas often display a pattern of elevated noise levels measurement duration, but there were two periods when noise levels were higher at levels at night. This pattern was disrupted between the hours of 3:00 a.m. and 8:00 a.m. on March 9, when noise levels were elevated at both ML1 and ML2. On March 10, noise levels were again elevated at ML1 between the hours of 7:00 a.m. and 2:00 p.m., but the event appears to have been more localized to ML1. The sources of these elevated noise levels on March 9 and March 10 are unclear.

3 Environmental Consequences

HDR evaluated the potential for noise impacts resulting from the Proposed Action and the No Action Alternative.

3.1 Noise Analysis Approach

Impacts on the noise environment from the Proposed Action or No Action Alternative would be considered significant if any of the following were to occur:

- Construction activities during prohibited hours or generating noise levels exceeding the Fairfax County noise limit of 90 dBA in residential areas (see Section 2.2).
- Back-up generator testing in a manner prohibited by Fairfax County (see Section 2.2).
- Typical operations generating noise levels exceeding the Fairfax County limits (see Table 2-1).
- Typical operations exceeding Noise Zone I aviation noise limits of 65 dBA DNL at onsite or off-site NSRs (see Table 2-2).

3.1.1 Noise Analysis Approach for Proposed Action Construction

HDR estimated construction noise levels using source levels and usage factors from the Federal Highway Administration's (FHWA) Highway Construction Noise Handbook (FHWA, 2006). Exact equipment types, quantities, and locations are unknown at this time; therefore, calculated construction noise levels are representative of various activities at set distances. The calculations assumed all equipment associated with an activity would operate at the same location. HDR anticipates construction equipment would be spread throughout the site, so the calculation approach may result in higher noise levels than during peak construction periods. The FHWA Highway Construction Noise Handbook quantifies construction equipment noise emissions using the maximum sound level (LMAX). HDR used the LMAX and usage factors to calculate hourly LEQs for representative activities.

3.1.2 Noise Analysis Approach for Proposed Action Operations

HDR calculated operations noise levels using the 3-D environmental noise software Computer Aided Noise Abatement (CadnaA), with calculation methods from the International Organization for Standardization (ISO) 9613-2, "Acoustics – Attenuation of Sound during Propagation Outdoors" (ISO, 1996). The model accounts for mobile and stationary Proposed Action noise sources, terrain (including grading), and existing and proposed buildings. The noise model does not include noise from existing sources. The Fairfax County noise ordinance exempts motor vehicles on right-of-way; therefore, modeled noise levels represent on-site mobile noise sources. The automobile and truck noise emissions were based on FHWA Traffic Noise Model (TNM) calculation methods in CadnaA. HDR used projected peak hour traffic volumes to estimate noise from automobile and truck movements around the site. Table 3-1 summarizes the projected inbound and outbound traffic volumes for the Proposed Action.

Table 3-1. Projected	I Traffic	Volumes	for	Proposed	Action
----------------------	-----------	---------	-----	----------	--------

Period	Inbound Traffic Volume	Outbound Traffic Volume
Peak AM Hour	540 ª	22 ^b
Peak PM Hour	20 °	540 ^a

Source: HDR-Tehama JV, 2022

^a Assumed 18 of these vehicles would be heavy trucks.

^b Assumed 4 of these vehicles would be heavy trucks.

^c Assumed 2 of these vehicles would be heavy trucks.

HDR modeled on-site automobile and truck noise based on the following assumptions.

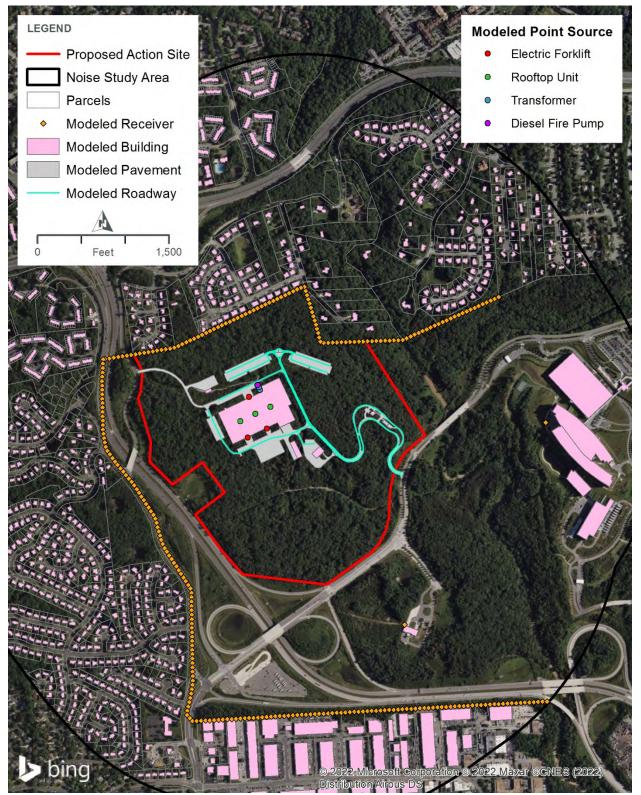
- Peak PM hour volumes were modeled throughout the daytime hours (7:00 a.m. to 10:00 p.m.).
- Peak AM hour volumes divided by nine were modeled throughout the nighttime hours (10:00 p.m. to 7:00 a.m.). Assumed peak AM hour commuters may arrive before 7:00 a.m., but other overnight vehicle movements would be minimal.
- Half of the heavy trucks would travel to and from the north side of the Distribution Center and half of the heavy trucks would travel to and from the south side of the Distribution Center.
- Automobile movements were distributed throughout the site largely based on the number of parking stalls at each parking area.
- Automobiles and trucks would move around the site at a speed of 15 miles per hour.

HDR modeled on-site stationary noise from electric forklifts, rooftop units, transformers, and a diesel fire pump. Electric forklifts are a mobile source, but HDR assumed they would operate within defined areas on the north and south sides of the Distribution Center. HDR assumed the location, quantity, and noise emissions for all stationary noise sources. Table 3-2 summarizes the modeled sound power levels.

Stationary Source	Lw at 63 Hz (dBL)	Lw at 125 Hz (dBL)	Lw at 250 Hz (dBL)	Lw at 500 Hz (dBL)	Lw at 1000 Hz (dBL)	Lw at 2000 Hz (dBL)	Lw at 4000 Hz (dBL)	Lw at 8000 Hz (dBL)
Electric Forklift (Qty 3) ^a	122	117	114	112	112	108	102	97
Rooftop Unit (Qty 3) b	97	96	97	96	94	90	86	81
Transformer (Qty 2) °	99	101	96	96	90	85	80	73
Diesel Fire Pump (Qty 1) °	103	101	100	99	98	97	96	92

Table 3-2. Modeled Stationary Source Sound Power Levels

^a Octave band sound power levels derived from British Standard (BS) 5228-1:2009 (British Standards Institution [BSI], 2009)


^b Octave band sound power levels derived from typical submittals

^c Octave band sound power levels derived from "Electric Power Plant Environmental Noise Guide" (Edison Electric Institute, 1984)

HDR assumed the electric forklifts would operate at all daytime hours, and the rooftop units, transformers, and diesel fire pump would operate at all hours of the day. HDR assumed the stated quantities of each source would operate simultaneously. The Proposed Action would also include two generators. The Fairfax County noise ordinance includes exemptions for back-up generators, so HDR excluded them from the noise model.

Figure 3-1 shows the noise model features.

Note: Figure uses CAD and GIS data from USACE and Fairfax County

Table 3-3 summarizes the modeled heights for the stationary noise sources and existing and proposed buildings.

Table 3-3. Modeled Heights

Stationary Source / Building	Modeled Height (feet)
Electric Forklift	3.3
Rooftop Unit (height relative to Distribution Center / Administrative Building roof)	9.9
Transformer	6.6
Diesel Fire Pump	3.3
Distribution Center / Administrative Building	48
Support Buildings	15
Gate House	10
Existing FBNA NGA Headquarters	91
Existing FBNA NGA Support Building & Parking Structure	39
Existing FBNA NGA Central Plant & Visitor Center & Remote Inspection Facility	15
Existing Off-site Buildings	15

Table 3-4 summarizes the noise model parameters.

Table 3-4. Model Parameters

Parameter	Model Approach
Terrain	Proposed Action grading was merged with publicly available terrain data. Model included 5-foot interval contour lines.
Buildings	Model included proposed buildings and existing off-site buildings based on publicly available GIS data.
Ground Factor	The ground was generally modeled as 45% absorptive to account for mostly soft ground. Proposed pavement was modeled as 0% absorptive.
Foliage	No foliage was modeled. While the Proposed Action Site is wooded, the foliage appears to be mostly deciduous. The model represents the condition when the trees have shed their leaves, because this condition would result in higher modeled noise levels than the condition when the trees have their leaves.
Meteorology	Downwind conditions were assumed in all directions – at each modeled receiver. Downwind conditions result in higher modeled noise levels.
Temperature and Relative Humidity	The modeled temperature of 10 degrees Celsius and relative humidity of 70% generally aligned with publicly available annual averages for the Washington, D.C. area.

HDR modeled operations noise levels at specific receiver points, which were placed every 50 feet along the FBNA property boundary. Additional receiver points were placed to represent the NGA headquarters and remote inspection facility.

3.2 Proposed Action Analysis

The Proposed Action would introduce short-term noise sources during construction and long-term noise sources during operations.

3.2.1 Analysis of Proposed Action Construction

Construction under the Proposed Action would result in elevated noise levels due to heavy equipment operation on-site for about 21 months. The noise levels generated at any given time would vary depending on the phase of construction, the specific activities occurring, and the equipment used. The highest construction noise levels would more likely occur during earlier phases of construction due to grading and earthwork activities. Construction activity would generally occur between the hours of 7:00 a.m. and 3:30 p.m., Monday through Friday, which would comply with the construction schedule requirements of the Fairfax County noise ordinance.

Table 3-5 summarizes calculated construction noise levels for representative activities and equipment that may operate on the Proposed Action Site.

Equipment Type	Quantity	Usage Factor ^a	LMAX at 50 feet (dBA) ª	Hourly LEQ at 50 feet (dBA)	Hourly LEQ at 100 feet (dBA)	Hourly LEQ at 250 feet (dBA)	Hourly LEQ at 500 feet (dBA)
	Pea	ak Hour Traf	fic (6:30 a.m	. to 7:30 a.n	n.)		
Automobile	56	0.25 ^b	55	66	60	52	46
Truck	18	0.25 ^b	84	91	85	77	71
Total for Activity	-	-	-	91	85	77	71
		Л	Mobilization				
Excavator	1	0.40	85	81	75	67	61
Dozer	3	0.40	85	86	80	72	66
Skid Steer Loader	2	0.40	80	79	73	65	59
Truck	6	0.25 ^b	84	86	80	72	66
Total for Activity	-	-	-	90	84	76	70
		Tree Re	emoval / Gru	bbing			
Dozer	3	0.40	85	86	80	72	66
Scraper	2	0.40	85	84	78	70	64
Excavator	1	0.40	85	81	75	67	61
Crane	1	0.16	85	77	71	63	57
Truck	6	0.25 ^b	84	86	80	72	66
Total for Activity	-	-	-	91	85	77	71
Earthwork & Site Development							
Dozer	3	0.40	85	86	80	72	66
Grader	2	0.40	85	84	78	70	64
Excavator	1	0.40	85	81	75	67	61
Truck	6	0.25 ^b	84	86	80	72	66
Total for Activity	-	-	-	91	85	77	71
Base Building Construction							
Crane	1	0.16	85	77	71	63	57
Concrete Saw	2	0.20	90	86	80	72	66
Truck	3	0.25 ^b	84	83	77	69	63
Total for Activity	-	-	-	88	82	74	68

Table 3-5. Calculated Construction Noise Levels

^a LMAX and Usage Factor generally derived from FHWA Highway Construction Noise Handbook (FHWA, 2006)

^b Assumed max vehicle idling time of 15 minutes per hour (one quarter of the hour)

While the Fairfax County noise ordinance includes an exemption for daytime construction activities, such activities cannot generate noise levels exceeding 90 dBA in residential areas. The calculated construction noise levels in Table 3-5 exceed 90 dBA within 50 feet of some activities. At 100 feet, all calculated construction activity noise levels would be below 90 dBA. The primary site features associated with the Proposed Action are more than 100 feet from the FBNA property boundary. HDR assumes some equipment may operate within 100 feet of the FBNA property boundary, but not a concentration of construction equipment. Therefore, based on the representative construction activities and equipment outlined in Table 3-5, construction noise levels are not anticipated to exceed 90 dBA in residential areas.

Construction of the Proposed Action would result in elevated noise levels throughout the construction phase. The construction schedule would comply with the Fairfax County noise ordinance. The representative calculations of Table 3-5 indicate the resulting noise levels in residential areas would be below 90 dBA. Therefore, construction noise is projected to have a *less than significant adverse impact*.

3.2.2 Analysis of Proposed Action Operations

Operation of the Proposed Action would introduce new or additional noise sources to the noise study area, including automobiles, trucks, electric forklifts, rooftop units, transformers, a diesel fire pump, and generators. While HDR's modeling approach assumed more consistent traffic volumes, the automobile noise would be highest during the morning and afternoon/evening commuting hours. HDR assumes truck and electric forklift noise would be variable depending on the timing of material deliveries and retrievals. The Distribution Center / administration building is more than 100 yards from the FBNA property boundary, so HDR assumes loading and unloading of trucks would not occur within 100 yards of a residential dwelling per the Fairfax County noise ordinance.

Table 3-6 summarizes the noise model results for typical operations, which excludes the generators.

Modeled Receiver Group	Highest Modeled Hourly LEQ at Daytime (dBA)	Highest Modeled Hourly LEQ at Night (dBA)	Highest Modeled DNL (dBA)
North FBNA Boundary (residential parcels)	52	43	52
West FBNA Boundary (residential parcels)	55	38	53
South FBNA Boundary (industrial parcels)	47	28	45
FBNA NGA Remote Inspection Facility	50	34	49
FBNA NGA Headquarters	48	35	47

Table 3-6. Noise Model Results for Typical Operations

The FBNA boundary results represent the highest modeled noise levels across those receiver points. They are considered representative of the adjacent NSRs. The typical operations noise sources were assumed to operate continuously in calculating hourly

LEQs, so HDR compared the modeled results to the Fairfax County noise limits for continuous sources. All modeled daytime hourly LEQ are below the most stringent Fairfax County daytime limit of 60 dBA, and all modeled nighttime hourly LEQs are below the most stringent nighttime limit of 55 dBA. The modeled daytime and nighttime hourly LEQs are within the range of existing hourly LEQs measured at ML1 and ML2 (see Table 2-3). The modeled DNLs are below the measured DNLs from ML1 and ML2. Therefore, HDR anticipates the site would remain classified as Noise Zone I during operations (see Table 2-2).

HDR assumes the generators would only operate during emergency conditions or for maintenance events. HDR assumes the maintenance events would only occur between the hours of 7:00 a.m. and 9:00 p.m. with a total duration in any one day not to exceed two hours. Under these conditions, the generators would comply with the Fairfax County exemption for generator noise.

Based on the modeled typical operations noise levels and assumed generator maintenance schedule, the operational noise from the Proposed Action is projected to have a *less than significant adverse impact*.

3.3 No Action Alternative Analysis

Under the No Action Alternative, the Proposed Action would not occur. The Proposed Action Site would remain in its existing condition. The existing noise environment would not change; therefore, the No Action Alternative would have *no impact* on the noise environment.

4 Mitigation Measures

While no significant adverse noise impacts are anticipated, HDR recommends best practice mitigation measures for construction and operation under the Proposed Action.

4.1 Mitigation Measures for Construction

Best practices for managing noise during construction include the following:

- Select quietest available construction methods and equipment.
- Include the original equipment manufacturer's muffler or a higher performing muffler on all equipment.
- Maintain and inspect all equipment to allow for quieter operation.
- Use augmented back-up alarms, such as chirps.
- Use neoprene padding on dump truck tailgates.
- Prohibit jake braking or engine compression braking at the Proposed Action Site.
- Utilize noise barriers and enclosures where feasible.

4.2 Mitigation Measures for Operations

Select the quietest available electric forklifts, rooftop units, transformers, diesel fire pump, and generators. Place the generators in enclosures with exhaust mufflers.

5 Acronyms and Abbreviations

ANSI	American National Standards Institute
ASA	Acoustical Society of America
BS	British Standard
BSI	British Standards Institution
CAD	computer-aided design
CadnaA	Computer Aided Noise Abatement
CDC	Centers for Disease Control and Prevention
dB	decibel
dBA	decibel, A-weighted
dBC	decibel, C-weighted
DNL	day-night average sound level
DoD	Department of Defense
FBNA	Fort Belvoir North Area
FHWA	Federal Highway Administration
GIS	geographic information system
I-95	Interstate-95
ISO	International Organization for Standardization
LEQ	equivalent-average sound level
LMAX	maximum sound level
LUPZ	Land Use Planning Zone
ML	measurement location
NGA	National Geospatial-Intelligence Agency
NSR	noise-sensitive receptor
PK 15(met)	peak noise level exceeded by 15 percent of events
TNM	Traffic Noise Model
USC	United States Code
USACE	U.S. Army Corps of Engineers

6 References

American National Standards Institute (ANSI) / Acoustical Society of America (ASA)

2010 S1.13, Measurement of Sound Pressure Levels in Air.

British Standards Institution (BSI)

2009 Code of Practice for Noise and Vibration Control on Construction and Open Sites – Part 1: Noise. BS 5228-1:2009.

Centers for Disease Control and Prevention (CDC)

2019 What Noises Cause Hearing Loss, last reviewed October 7, 2019. https://www.cdc.gov/nceh/hearing_loss/what_noises_cause_hearing_loss.html

County of Fairfax (Virginia)

2021 Code of Ordinances, Noise Ordinance, Chapter 108.1, effective December 7, 2021.

Department of Defense (DoD)

2020 DoD Instruction 4715.13, DoD Operational Noise Program. Prepared by the Office of the Under Secretary of Defense for Acquisition and Sustainment, January 28, 2020.

Edison Electric Institute

1984 Electric Power Plant Environmental Noise Guide.

Federal Highway Administration (FHWA)

2006 FHWA Highway Construction Noise Handbook. Final Report, August 2006.

HDR-Tehama JV

2022 DRAFT Traffic Impact Study to Support National Environmental Policy Act Documentation for Distribution Center at Fort Belvoir North Area (FBNA).

International Organization for Standardization (ISO)

1996 9613-2, Acoustics — Attenuation of Sound during Propagation Outdoors — Part 2: General Method of Calculation.

U.S. Army

2007 Army Regulation 200-1, Environmental Quality, Environmental Protection and Enhancement. Prepared by the U.S. Department of the Army, effective December 27, 2007. THIS PAGE INTENTIONALLY LEFT BLANK